• Title/Summary/Keyword: Exponentiation Algorithm

Search Result 67, Processing Time 0.022 seconds

IMPROVING THE POCKLINGTON AND PADRÓ-SÁEZ CUBE ROOT ALGORITHM

  • Cho, Gook Hwa;Lee, Hyang-Sook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.277-283
    • /
    • 2019
  • In this paper, we present a cube root algorithm using a recurrence relation. Additionally, we compare the implementations of the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm with the Adleman-Manders-Miller algorithm. With the recurrence relations, we improve the Pocklington and $Padr{\acute{o}}-S{\acute{a}}ez$ algorithm by using a smaller base for exponentiation. Our method can reduce the average number of ${\mathbb{F}}_q$ multiplications.

Design of High Speed Modular Exponentiation Operation Method for RSA Algorithm (RSA 알고리즘 부하 경감을 위한 고속 모듈러 멱승 연산 알고리즘 설계)

  • Kim, Kap-Yol;Lee, Chul-Soo;Park, Seok-Cheon
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.507-512
    • /
    • 2008
  • At a recent, enterprises based on online-service are established because of rapid growth of information network. These enterprises collect personal information and do customer management. If customers use a paid service, company send billing information to customer and customer pay it. Such circulation and management of information is big issue but most companies don't care of information security. Actually, personal information that was managed by largest internal open-market was exposed. For safe customer information management, this paper proposes the method that decrease load of RSA cryptography algorithm that is commonly used for preventing from illegal attack or hacking. The method for decreasing load was designed by Binary NAF Method and it can operates modular Exponentiation rapidly. We implemented modular Exponentiation algorithm using existing Binary Method and Windows Method and compared and evaluated it.

Design of Linear Systolic Arrays of Modular Multiplier for the Fast Modular Exponentiation (고속 모듈러 지수연산을 위한 모듈러 곱셈기의 선형 시스톨릭 어레이 설계)

  • Lee, Geon-Jik;Heo, Yeong-Jun;Yu, Gi-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • 공개키 암호화 시스템에서 주된 연산은 512비트 이상의 큰 수에 의한 모듈러 지수 연산으로 표현되며, 이 연산은 내부적으로 모듈러 곱셈을 반복적으로 수행함으로써 계산된다. 본 논문에서는 Montgomery 알고리즘을 분석하여 right-to-left 방식의 모듈러 지수 연산에서 공통으로 계산 가능한 부분을 이용하여 모듈러 제곱과 모듈러 곱셈을 동시에 수행하는 선형 시스톨릭 어레이를 설계한다. 설계된 시스톨릭 어레이는 VLSI 칩과 같은 하드웨어로 구현함으로써 IC 카드나 smart 카드에 이용될 수 있다.Abstract The main operation of the public-key cryptographic system is represented the modular exponentiation containing 512 or more bits and computed by performing the repetitive modular multiplications. In this paper, we analyze Montgomery algorithm and design the linear systolic array for performing modular multiplication and modular squaring simultaneously using the computable part in common in right-to-left modular exponentiation. The systolic array presented in this paper could be designed on VLSI hardware and used in IC and smart card.

An Efficient Bit-serial Systolic Multiplier over GF($2^m$) (GF($2^m$)상의 효율적인 비트-시리얼 시스톨릭 곱셈기)

  • Lee Won-Ho;Yoo Kee-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.1_2
    • /
    • pp.62-68
    • /
    • 2006
  • The important arithmetic operations over finite fields include multiplication and exponentiation. An exponentiation operation can be implemented using a series of squaring and multiplication operations over GF($2^m$) using the binary method. Hence, it is important to develop a fast algorithm and efficient hardware for multiplication. This paper presents an efficient bit-serial systolic array for MSB-first multiplication in GF($2^m$) based on the polynomial representation. As compared to the related multipliers, the proposed systolic multiplier gains advantages in terms of input-pin and area-time complexity. Furthermore, it has regularity, modularity, and unidirectional data flow, and thus is well suited to VLSI implementation.

Design of VLSI Architecture for Efficient Exponentiation on $GF(2^m)$ ($GF(2^m)$ 상에서의 효율적인 지수제곱 연산을 위한 VLSI Architecture 설계)

  • 한영모
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.6
    • /
    • pp.27-35
    • /
    • 2004
  • Finite or Galois fields have been used in numerous applications such as error correcting codes, digital signal processing and cryptography. These applications often require exponetiation on GF(2$^{m}$ ) which is a very computationally intensive operation. Most of the existing methods implemented the exponetiation by iterative methods using repeated multiplications, which leads to much computational load, or needed much hardware cost because of their structural complexity in implementing. In this paper, we present an effective VLSI architecture for exponentiation on GF(2$^{m}$ ). This circuit computes the exponentiation by multiplying product terms, each of which corresponds to an exponent bit. Until now use of this type algorithm has been confined to a primitive element but we generalize it to any elements in GF(2$^{m}$ ).

Design and Analysis of a Linear Systolic Array for Modular Exponentation in GF(2m) (GF(2m) 상에서 모듈러 지수 연산을 위한 선형 시스톨릭 어레이 설계 및 분석)

  • Lee, Won-Ho;Lee, Geon-Jik;Yu, Gi-Yeong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.7
    • /
    • pp.743-751
    • /
    • 1999
  • 공개키 암호 시스템에서 모듈러 지수 연산은 주된 연산으로, 이 연산은 내부적으로 모듈러 곱셈을 반복적으로 수행함으로써 계산된다. 본 논문에서는 GF(2m)상에서 수행할 수 있는 Montgomery 알고리즘을 분석하여 right-to-left 방식의 모듈러 지수 연산에서 공통으로 계산 가능한 부분을 이용하여 모듈러 제곱과 모듈러 곱셈을 동시에 수행하는 선형 시스톨릭 어레이를 설계한다. 본 논문에서 설계한 시스톨릭 어레이는 기존의 곱셈기보다 모듈러 지수 연산시 약 0.67배 처리속도 향상을 가진다. 그리고, VLSI 칩과 같은 하드웨어로 구현함으로써 IC 카드에 이용될 수 있다.Abstract One of the main operations for the public key cryptographic system is the modular exponentiation, it is computed by performing the repetitive modular multiplications. In this paper, we analyze Montgomery's algorithm and design a linear systolic array to perform modular multiplication and modular squaring simultaneously. It is done by using common-multiplicand modular multiplication in the right-to-left modular exponentiation over GF(2m). The systolic array presented in this paper improves about 0.67 times than existing multipliers for performing the modular exponentiation. It could be designed on VLSI hardware and used in IC cards.

Area Efficient Bit-serial Squarer/Multiplier and AB$^2$-Multiplier (공간 효율적인 비트-시리얼 제곱/곱셈기 및 AB$^2$-곱셈기)

  • 이원호;유기영
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.1_2
    • /
    • pp.1-9
    • /
    • 2004
  • The important arithmetic operations over finite fields include exponentiation, division, and inversion. An exponentiation operation can be implemented using a series of squaring and multiplication operations using a binary method, while division and inversion can be performed by the iterative application of an AB$^2$ operation. Hence, it is important to develop a fast algorithm and efficient hardware for this operations. In this paper presents new bit-serial architectures for the simultaneous computation of multiplication and squaring operations, and the computation of an $AB^2$ operation over $GF(2^m)$ generated by an irreducible AOP of degree m. The proposed architectures offer a significant improvement in reducing the hardware complexity compared with previous architectures, and can also be used as a kernel circuit for exponentiation, division, and inversion architectures. Furthermore, since the Proposed architectures include regularity and modularity, they can be easily designed on VLSI hardware and used in IC cards.

The alternative Method to Finish Modular Exponentiation and Point Multiplication Processes

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2610-2630
    • /
    • 2021
  • The aim of this paper is to propose the alternative algorithm to finish the process in public key cryptography. In general, the proposed method can be selected to finish both of modular exponentiation and point multiplication. Although this method is not the best method in all cases, it may be the most efficient method when the condition responds well to this approach. Assuming that the binary system of the exponent or the multiplier is considered and it is divided into groups, the binary system is in excellent condition when the number of groups is small. Each group is generated from a number of 0 that is adjacent to each other. The main idea behind the proposed method is to convert the exponent or the multiplier as the subtraction between two integers. For these integers, it is impossible that the bit which is equal to 1 will be assigned in the same position. The experiment is split into two sections. The first section is an experiment to examine the modular exponentiation. The results demonstrate that the cost of completing the modular multiplication is decreased if the number of groups is very small. In tables 7 - 9, four modular multiplications are required when there is one group, although number of bits which are equal to 0 in each table is different. The second component is the experiment to examine the point multiplication process in Elliptic Curves Cryptography. The findings demonstrate that if the number of groups is small, the costs to compute point additions are low. In tables 10 - 12, assigning one group is appeared, number of point addition is one when the multiplier of a point is an even number. However, three-point additions are required when the multiplier is an odd number. As a result, the proposed method is an alternative way that should be used when the number of groups is minimal in order to save the costs.

2,048 bits RSA public-key cryptography processor based on 32-bit Montgomery modular multiplier (32-비트 몽고메리 모듈러 곱셈기 기반의 2,048 비트 RSA 공개키 암호 프로세서)

  • Cho, Wook-Lae;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1471-1479
    • /
    • 2017
  • This paper describes a design of RSA public-key cryptography processor supporting key length of 2,048 bits. A modular multiplier that is core arithmetic function in RSA cryptography was designed using word-based Montgomery multiplication algorithm, and a modular exponentiation was implemented by using Left-to-Right (LR) binary exponentiation algorithm. A computation of a modular multiplication takes 8,386 clock cycles, and RSA encryption and decryption requires 185,724 and 25,561,076 clock cycles, respectively. The RSA processor was verified by FPGA implementation using Virtex5 device. The RSA cryptographic processor synthesized with 100 MHz clock frequency using a 0.18 um CMOS cell library occupies 12,540 gate equivalents (GEs) and 12 kbits memory. It was estimated that the RSA processor can operate up to 165 MHz, and the estimated time for RSA encryption and decryption operations are 1.12 ms and 154.91 ms, respectively.

Design of an LFSR Multiplier with Low Area Complexity (효율적인 공간 복잡도의 LFSR 곱셈기 설계)

  • 정재형;이성운;김현성
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 2003
  • This paper proposes a modular multiplier based on LFSR (Linear Feedback Shift Register) architecture with efficient area complexity over GF(2/sup m/). At first, we examine the modular exponentiation algorithm and propose it's architecture, which is basic module for public-key cryptosystems. Furthermore, this paper proposes on efficient modular multiplier as a basic architecture for the modular exponentiation. The multiplier uses AOP (All One Polynomial) as an irreducible polynomial, which has the properties of all coefficients with '1 ' and has a more efficient hardware complexity compared to existing architectures.

  • PDF