• Title/Summary/Keyword: Exponential function

Search Result 943, Processing Time 0.027 seconds

An Experimental Study on the Quality Properties of the Expansive for Dry-Shrinkage Compensation of the On-Dol Floor Mortar (온돌바닥 모르터의 건조수축 보상을 위한 팽창재의 품질특성에 관한 실험연구)

  • 이종열;이웅종;정성철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.4
    • /
    • pp.314-320
    • /
    • 2001
  • In this paper, the properties of an expansive agent (CaO-CaS $O_4$) for dry shrinkage compensation were investigated by a series of experimental program, which might be used at On-Dol heating system as mortar type. The expansion principle of the CaO-CaS $O_4$ was mainly verified. As a result of this study, the correlation between the content of the expansive agent and the compressive strength was obtained in the form of exponential function(Y = A $e^{-x}$), showing that as the content of expansive agent increased as the expansion performance with the compressive strength increased by only a certain amount. Also, as a results of the analysis of a correlation between the expansive performance and the chemical properties which generally accompanied a part of quality management in manufacturing the expensive cement, the expansive performance was relative to only the contents of the F-CaO among chemical properties(Blaine, +44$\mu\textrm{m}$R, F-CaO, S $O_3$,L.O.I). And it was clarified that the results were relative to the second order function, showing that if the contents of the F-CaO increased the expansive performance Increased.d.

Influence of Alumina Slurry Composition on Mechanical Properties of Green Tapes (알루미나 슬러리 조성에 따른 그린 테이프의 기계적 특성)

  • Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon;Lee, Deuk-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.871-877
    • /
    • 2002
  • Alumina slurriers, having various amount of alumina and ratio of organic additives, were prepared for tape casting. The relative viscosities were compared to investigate influence of composition on stability of the slurry and plotted as a function of powder fraction. They raised with increasing powder fraction of slurries, revealing a exponential function curve, which means that stability of slurry was not affected by amount and composition of organic additives. Cast green tapes were tested under tensile condition at room temperature. The increase in alumina ratio and binder ratio was found to decrease strain to failure of green tapes from 363% to 45% and from 68% to 25%, respectively. Tensile strength of green tapes increased abruptly with increasing alumina ratio, which showed its maximum at 1 MPa. On other hand, Tensile strength increased continuously from 0.5 MPa to 4 MPa with increasing binder ratio. Mechanical properties of them were affected seriously and lost their properties by elevating temperature from 20$^{\circ}C$ to 80$^{\circ}C$.

Bearing Capacity Characteristics of Shallow Foundation by Three Dimension FEM (3차원 유한요소해석에 의한 얕은 기초의 지지력 특성)

  • Park, Choon-Sik;Kim, Jong-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.3
    • /
    • pp.17-24
    • /
    • 2019
  • The purpose of this study is to understand the characteristics of bearing capacity of shallow foundation on the grounds. We made a comparative study of existing bearing capacity theory, based on the three-dimensional finite element analysis with a variety of conditions such as ground condition, foundation scale and foundation shape. In the finite element analysis, the ultimate bearing capacity showed a gradual convergence in the form of exponential function or logarithm function according to the foundation scale. Although the shear strength increased, the bearing capacity tended not to increase but change linearly. In the results of comparative study of existing bearing capacity theory, bearing capacity ratio ($q_{u(FEA)}/q_{u(theory)}$) of pure sand has the outcome closest to those of the Terzaghi method. Pure clay turned out to be about 0.4~0.6 while normal soil was changed in a range of 0.3~1.3. As shear strength is increased, the results turned out to be less than 1.0. Bearing capacity ratio ($q_u/q_{u(1.0)}$), normalized at 1.0m bearing capacity, was about 35%, 15% and 5% of theoretical formula under the condition of ${\phi}=25^{\circ}$, $30^{\circ}$ and $35^{\circ}$ of pure sand; no scale effect was found with pure clay and the normal soil with lower soil strength level showed less than 10% of the theoretical formula of pure sand. Bearing capacity ratio of each case, in accordance with, the shear strength increase, was largely influenced by the internal friction angle. Shape factor of bearing capacity ratios classified by foundation shapes have different results according to the shapes; the shape factor of circular foundation is 1.50, square foundation is 1.30, rectangular and continuous foundations are 1.1~1.0.

Effect of Viscosity and Clogging on Grout Penetration Characteristics (점도 변화와 폐색 현상을 고려한 그라우트재의 침투 특성)

  • Kim, Jong-Sun;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.5-13
    • /
    • 2007
  • Many construction projects adopt grouting technology to prevent the leakage of groundwater or to improve the shear strength of the ground. Recognition as a feasible field procedure dates back to 1925. Since then, developments and field use have increased rapidly. According to improvement of grout materials, theoretical study on grout penetration characteristics is demanded. Fluid of grout always tends to flow from higher hydraulic potential to lower one and the motion of grout is also a function of formation permeability. Viscosity of pout is changed by chemical action while grout moves through pores. Due to the increment of viscosity, permeability is decreased. Permeability is also reduced by grout particle deposits to the soil aggregates. In this paper, characteristics of new cement grout material that has been developed recently are studied: injectable volume of new grout material is tested in two different grain sizes of sands; and the method to calculate injectable volume of grout Is suggested with consideration of change in viscosity and clogging phenomena. The calculated values are compared with injection test results. Viscosity of new grout material is found to increase as an exponential function of time. And lumped parameter $\delta$ of new grout material to be used for assessing deposition characteristics is estimated by comparing deposit theory with injection test results considering different soil types and different injection pressures. Injection test results show that grout penetration rate is decreased by the increase of grout viscosity and clogging phenomena.

Comparative analysis of activation functions of artificial neural network for prediction of optimal groundwater level in the middle mountainous area of Pyoseon watershed in Jeju Island (제주도 표선유역 중산간지역의 최적 지하수위 예측을 위한 인공신경망의 활성화함수 비교분석)

  • Shin, Mun-Ju;Kim, Jin-Woo;Moon, Duk-Chul;Lee, Jeong-Han;Kang, Kyung Goo
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.spc1
    • /
    • pp.1143-1154
    • /
    • 2021
  • The selection of activation function has a great influence on the groundwater level prediction performance of artificial neural network (ANN) model. In this study, five activation functions were applied to ANN model for two groundwater level observation wells in the middle mountainous area of the Pyoseon watershed in Jeju Island. The results of the prediction of the groundwater level were compared and analyzed, and the optimal activation function was derived. In addition, the results of LSTM model, which is a widely used recurrent neural network model, were compared and analyzed with the results of the ANN models with each activation function. As a result, ELU and Leaky ReLU functions were derived as the optimal activation functions for the prediction of the groundwater level for observation well with relatively large fluctuations in groundwater level and for observation well with relatively small fluctuations, respectively. On the other hand, sigmoid function had the lowest predictive performance among the five activation functions for training period, and produced inappropriate results in peak and lowest groundwater level prediction. The ANN-ELU and ANN-Leaky ReLU models showed groundwater level prediction performance comparable to that of the LSTM model, and thus had sufficient potential for application. The methods and results of this study can be usefully used in other studies.

A Study on the Dimensions, Surface Area and Volume of Grains (곡립(穀粒)의 치수, 표면적(表面積) 및 체적(體積)에 관(關)한 연구(硏究))

  • Park, Jong Min;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.84-101
    • /
    • 1989
  • An accurate measurement of size, surface area and volume of agricultural products is essential in many engineering operations such as handling and sorting, and in heat transfer studies on heating and cooling processes. Little information is available on these properties due to their irregular shape, and moreover very little information on the rough rice, soybean, barley, and wheat has been published. Physical dimensions of grain, such as length, width, thickness, surface area, and volume vary according to the variety, environmental conditions, temperature, and moisture content. Especially, recent research has emphasized on the variation of these properties with the important factors such as moisture content. The objectives of this study were to determine physical dimensions such as length, width and thickness, surface area and volume of the rough rice, soybean, barley, and wheat as a function of moisture content, to investigate the effect of moisture content on the properties, and to develop exponential equations to predict the surface area and the volume of the grains as a function of physical dimensions. The varieties of the rough rice used in this study were Akibare, Milyang 15, Seomjin, Samkang, Chilseong, and Yongmun, as a soybean sample Jangyeobkong and Hwangkeumkong, as a barley sample Olbori and Salbori, and as a wheat sample Eunpa and Guru were selected, respectively. The physical properties of the grain samples were determined at four levels of moisture content and ten or fifteen replications were run at each moisture content level and each variety. The results of this study are summarized as follows; 1. In comparison of the surface area and the volume of the 0.0375m diameter-sphere measured in this study with the calculated values by the formula the percent error between them showed least values of 0.65% and 0.77% at the rotational degree interval of 15 degree respectively. 2. The statistical test(t-test) results of the physical properties between the types of rough rice, and between the varieties of soybean and wheat indicated that there were significant difference at the 5% level between them. 3. The physical dimensions varied linearly with the moisture content, and the ratios of length to thickness (L/T) and of width to thickness (W/T) in rough rice decreased with increase of moisture content, while increased in soybean, but uniform tendency of the ratios in barley and wheat was not shown. In all of the sample grains except Olbori, sphericity decreased with increase of moisture content. 4. Over the experimental moisture levels, the surface area and the volume were in the ranges of about $45{\sim}51{\times}10^{-6}m^2$, $25{\sim}30{\times}10^{-9}m^3$ for Japonica-type rough rice, about $42{\sim}47{\times}10^{-6}m^2$, $21{\sim}26{\times}10^{-9}m^3$ for Indica${\times}$Japonica type rough rice, about $188{\sim}200{\times}10^{-6}m^2$, $277{\sim}300{\times}10^{-9}m^3$ for Jangyeobkong, about $180{\sim}201{\times}10^{-6}m^2$, $190{\sim}253{\times}10^{-9}m^3$ for Hwangkeumkong, about $60{\sim}69{\times}10^{-6}m^2$, $36{\sim}45{\times}10^{-9}m^3$ for Covered barley, about $47{\sim}60{\times}10^{-6}m^2$, $22{\sim}28{\times}10^{-9}m^3$ for Naked barley, about $51{\sim}20{\times}10^{-6}m^2$, $23{\sim}31{\times}10^{-9}m^3$ for Eunpamill, and about $57{\sim}69{\times}10^{-6}m^2$, $27{\sim}34{\times}10^{-9}m^3$ for Gurumill, respectively. 5. The increasing rate of surface area and volume with increase of moisture content was higher in soybean than other sample grains, and that of Japonica-type was slightly higher than Indica${\times}$Japonica type in rough rice. 6. The regression equations of physical dimensions, surface area and volume were developed as a function of moisture content, the exponential equations of surface area and volume were also developed as a function of physical dimensions, and the regression equations of surface area were also developed as a function of volume in all grain samples.

  • PDF

A Bayesian Estimation of Price for Commercial Property: Using subjective priors and a kriging technique (상업용 토지 가격의 베이지안 추정: 주관적 사전지식과 크리깅 기법의 활용을 중심으로)

  • Lee, Chang Ro;Eum, Young Seob;Park, Key Ho
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.761-778
    • /
    • 2014
  • There has been relatively little study to model price for commercial property because of its low transaction volume in the market. Despite of this thin market character, this paper tried to estimate prices for commercial lots as accurate as possible. We constructed a model whose components consist of mean structure(global trend), exponential covariance function and a pure error term, and applied it to actual sales price data of Seoul. We explicitly took account of spatial autocorrelation of land price by utilizing a kriging technique, a representative method of spatial interpolation, because the land price of commercial lots has feature of differential price forming pattern depending on submarkets they belong to. In addition, we chose to apply a bayesian kriging to overcome data scarcity by incorporating experts' knowledge into prior probability distribution. The chosen model's excellent performance was verified by the result from validation data. We confirmed that the excellence of the model is attributed to incorporating both autocorexperts' knowledge and spatial autocorrelation in the model construction. This paper is differentiated from previous studies in the sense that it applied the bayesian kriging technique to estimate price for commercial lots and explicitly combined experts' knowledge with data. It is expected that the result of this paper would provide a useful guide for the circumstances under which property price has to be estimated reliably based on sparse transaction data.

  • PDF

Characteristics of soil respiration in Pinus densiflora stand undergoing secondary succession by fire-induced forest disturbance

  • Kim, Jeong-Seob;Lim, Seok-Hwa;Joo, Seung Jin;Shim, Jae-Kuk;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.113-122
    • /
    • 2014
  • The purpose of this study is to compare soil $CO_2$ efflux between burned and unburned sites dominated by Pinus densiflora forest in the Samcheok area where a big forest fire broke out along the east coast in 2000 and to measure soil $CO_2$ efflux and environmental factors between March 2011 and February 2012. Soil $CO_2$ efflux was measured with LI-6400 once a month; the soil temperature at 10 cm depth, air temperature, and soil moisture contents were measured in continuum. Soil $CO_2$ efflux showed the maximum value in August 2011 as 417.8 mg $CO_2m^{-2}h^{-1}$ (at burned site) and 1175.1 mg $CO_2m^{-2}h^{-1}$ (at unburned site), while it showed the minimum value as 41.4 mg $CO_2m^{-2}h^{-1}$ (at burned site) in December 2011 and 42.7 mg $CO_2m^{-2}h^{-1}$ (at unburned site) in February 2012. The result showed the high correlation between soil $CO_2$ efflux and the seasonal changes in temperature. More specifically, soil temperature showed higher correlation with soil $CO_2$ efflux in the burned site ($R^2$ = 0.932, P < 0.001) and the unburned site ($R^2$ = 0.942, P < 0.001) than the air temperature in the burned site ($R^2$ = 0.668, P < 0.01) and the unburned site ($R^2$ = 0.729, P < 0.001). $Q_{10}$ values showed higher sensitivity in the unburned site (4.572) than in the burned site (2.408). The total soil $CO_2$ efflux was obtained with the exponential function between soil $CO_2$ efflux and soil temperature during the research period, and it showed 2.5 times higher in the unburned site (35.59 t $CO_2ha^{-2}yr^{-1}$, 1 t = $10^3$ kg) than in the burned site (14.69 t $CO_2ha^{-2}yr^{-1}$).

Multiscale Analysis on Expectation of Mechanical Behavior of Polymer Nanocomposites using Nanoparticulate Agglomeration Density Index (나노 입자의 군집밀도를 이용한 고분자 나노복합재의 기계적 거동 예측에 대한 멀티스케일 연구)

  • Baek, Kyungmin;Shin, Hyunseong;Han, Jin-Gyu;Cho, Maenghyo
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.323-330
    • /
    • 2017
  • In this study, multiscale analysis in which the information obtained from molecular dynamics simulation is applied to the continuum mechanics level is conducted to investigate the effects of clustering of silicon carbide nanoparticles reinforced into polypropylene matrix on mechanical behavior of nanocomposites. The elastic behavior of polymer nanocomposites is observed for various states of nanoparticulate agglomeration according to the model reflecting the degradation of interphase properties. In addition, factors which mainly affect the mechanical behavior of the nanocomposites are identified, and new index 'clustering density' is defined. The correlation between the clustering density and the elastic modulus of nanocomposites is understood. As the clustering density increases, the interfacial effect decreased and finally the improvement of mechanical properties is suppressed. By considering the random distribution of the nanoparticles, the range of elastic modulus of nanocomposites for same value of clustering density can be investigated. The correlation can be expressed in the form of exponential function, and the mechanical behavior of the polymer nanocomposites can be effectively predicted by using the nanoparticulate clustering density.

Design of Unsupported Rock Pillars in a Room-and-Pillar Underground Structure by the Tributary Area Method and the Pillar Strength Estimation (지류론과 암주 강도의 추정에 의한 주방식 지하구조의 무지보 암주 설계)

  • Chang, Soo-Ho;Lee, Chulho;Choi, Soon-Wook;Hur, Jinsuk;Hwang, Jedon
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.335-343
    • /
    • 2014
  • Room-and-pillar mining method is one of the most popular underground mining method in the world. If the room-and-pillar mining method is able to be adopted in civil works, it would be highly probable to reduce underground construction costs and to expand a underground structure in use. Therefore, this study aims to analyze the design procedure of unsupported rock pillars which are indispensable to ensure the stability of a room-and-pillar underground structure. Parametric studies on their key design parameters are also carried out for 125 different kinds of design conditions. From the study, the width of a rock pillar is found to show a linear relationship with its corresponding safety factor. The safety factor of a unsupported rock pillar decreased drastically like a negative exponential function as the ratio of room width to pillar width increases in the same rock strength condition. Based on the parametric studies, a design chart to simply evaluate the geometric design parameters of a unsupported rock pillar satisfying a design safety factor is also proposed in this study.