• Title/Summary/Keyword: Explosions

Search Result 375, Processing Time 0.028 seconds

Hazard Evaluation of Minimum Ignition Energy by Electrostatic Voltage in Suspended Dust Particles (부유 분진의 정전압에 의한 최소착화에너지 위험성평가)

  • Han, Oue-Sup
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.359-365
    • /
    • 2021
  • We investigated experimentally the ignition characteristic of dust and the hazard evaluating for electrostatic discharge. The ignition energy experiments were performed on sample dusts such as PE(HD), PE(LD), PMMA using the MIKE-3 apparatus. The formation of flame during the ignition of PE(HD) dust clouds occurred after the delay time of about 8 ms, and the flame kernels were not observed in center of ignition occurrence area. The voltage increased with increasing the number of dust dispersions and the increase rate of measured voltage with dust concentration was the highest in the order of PMMA, PE(LD) and PE(HD). For the effect of dispersion condition on the voltage in PE(HD) dust, the results were obtained that the voltage increased as the number of dispersions increased and as the concentration increased under the same dispersion number. The safety voltages to prevent fire and explosions by electrostatic ignition were estimated that PE(HD), PE(LD)-1, PE(LD)-2, and PMMA were 2.58, 44.72, 25.82, and 8.16 kV, respectively. We proposed the method for estimating the minimum ignition energy by using the measured voltage data for efficient investigation of electrostatic ignition hazard.

Experimental investigation of impact behaviour of shear deficient RC beam to column connection

  • Murat, Aras;Tolga, Yilmaz;Ozlem, Caliskan;Ozgur, Anil;R. Tugrul, Erdem;Turgut, Kaya
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.619-632
    • /
    • 2022
  • Reinforced concrete (RC) structures may be subjected to sudden dynamic impact loads such as explosions occurring for different reasons, the collision of masses driven by rockfall, flood, landslide, and avalanche effect structural members, the crash of vehicles to the highway and seaway structures. Many analytical, numerical, and experimental studies focused on the behavior of RC structural elements such as columns, beams, and slabs under sudden dynamic impact loads. However, there is no comprehensive study on the behavior of the RC column-beam connections under the effect of sudden dynamic impact loads. For this purpose, an experimental study was performed to investigate the behavior of RC column-beam connections under the effect of low-velocity impact loads. Sixteen RC beam-column connections with a scale of 1/3 were manufactured and tested under impact load using the drop-weight test setup. The concrete compressive strength, shear reinforcement spacing in the beam, and input impact energy applied to test specimens were taken as experimental variables. The time histories of impact load acting on test specimens, accelerations, and displacements measured from the test specimens were recorded in experiments. Besides, shear and bending crack widths were measured. The effect of experimental variables on the impact behavior of RC beam-column connections has been determined and interpreted in detail. Besides, a finite element model has been established for verification and comparison of the experimental results by using ABAQUS software. It has been demonstrated that concrete strength, shear reinforcement ratio, and impact energy significantly affect the impact behavior of RC column-beam connections.

AIoT-based High-risk Industrial Safety Management System of Artificial Intelligence (AIoT 기반 고위험 산업안전관리시스템 인공지능 연구)

  • Yeo, Seong-koo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.168-170
    • /
    • 2022
  • The government enacted and promulgated the 'Severe Accident Punishment Act' in January 2021, and is enforcing the law for workplaces with 50 or more full-time workers. However, the number of industrial accident accidents in 2021 increased by 10.7% compared to the same period of the previous year, and chemical gas Safety accidents due to leaks and explosions also occur frequently. Therefore, in high-risk industrial sites, comprehensive Safety measures are urgently needed. In this study, BLE Mesh networking in industrial sites with poor communication environment apply technology. The complex sensor AIoT device recognizes a dangerous situation as a gas sensing value, voice, and motion value, and transmits it to the server. The server monitors the risk situation in real time through information value analysis and judgment through artificial intelligence LSTM algorithm and CNN algorithm for AIoT transmission information. Through this study, through the development of AIoT devices capable of gas sensing, voice and motion recognition, and AI-applied safety management systems, It will contribute to the expansion of the social safety net by expanding its application.

  • PDF

A study on Preventive Measures for Fire and Explosion Accidents During Acetic Acid Handling in Manufacturing the Semiconductor Material (반도체 소재 제조 공정에서 아세트산 취급 작업 시 발생한 화재·폭발 사고 예방대책에 관한 연구)

  • Dae Joon Lee;Sang Ryung Kim;Sang Gil Kim;Kyo Shik Park;Joon Won Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.2
    • /
    • pp.65-70
    • /
    • 2023
  • Flammable materials used in semiconductor supply facilities are manufactured at high temperatures and high pressures, and as the semiconductor industry becomes more sophisticated and larger, the amount of materials used is rapidly increasing. Recently, fires and explosions occurred during the handling of acetic acid, which is a raw material for making products in the semiconductor material manufacturing process. Overall problems such as lack of air inflow prevention for fire and explosion prevention were identified. Therefore, in this study, in order to accurately identify the cause of the accident and prevent fire and explosion that may occur in the process of handling large amounts of flammable liquids, opinions from various perspectives, such as construction of facilities such as hoppers, installation of AOPS components, and change in workers' perceptions would like to present.

A Study on the Stability Improvement of Oxygen Handling Equipment to Prevent Fire and Explosion Accidents in High-Pressure Oxygen Transport Piping (고압산소 이송배관시 화재·폭발 사고 방지를 위한 산소 취급 설비 안정성 향상에 관한 연구)

  • Sang Kyu Oh;Sang Ryung Kim
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.84-90
    • /
    • 2023
  • Oxygen, which is always present in the atmosphere among the three elements of combustion, can cause fires and explosions with only a very small amount of combustibles under high-pressure oxygen conditions. The burning rate is also significant, and can rise to temperatures that can have a direct impact, such as melting process equipment and piping in an instant. Therefore, accidents that occur under high pressure oxygen often cause more damage than other accidents. Recently, while operating a valve installed in an oxygen supply pipe, rapid combustion and rupture occurred inside, resulting in human casualties due to an explosion. In the case of an old carbon steel pipe, particles generated during operation become combustible and can cause accidents. . In particular, since oxygen facilities are facilities licensed under the High Pressure Gas Safety Management Actand there are no restrictions under the Occupational Safety and Health Act, accumulating these standards is of utmost importance. Therefore, in this study, based on accident cases and overseas standards, methods for improving safety when handling hyperbaric oxygen are reviewed.

Establishment of the Fire Response Guideline for Electric Vehicleson Underground Roads (지하도로 내 전기차 화재 대응지침 구축)

  • Donghyo Kang;Seong-Woo Cho;Hae Kim;Ho-In You;Ilsoo Yun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.92-107
    • /
    • 2023
  • Recently, along with the continuous increase in the supply of electric vehicles, electric vehicle fire accidents are also showing a rapidly increasing trend. Electric vehicle fires last for a long time compared to fires in internal combustion engine vehicles and have problems with the risk of secondary explosions and the generation of large amounts of smoke. In particular, electric vehicle fires in underground roads, which are semi-enclosed spaces, may amplify the problems of existing electric vehicle fires. On the other hand, there are no domestic response guidelines for electric vehicle fires occurring inside underground roads. Therefore, an awareness of fire accidents was confirmed through a survey of the general public, and electric vehicle fire characteristics and primary considerations were derived from stakeholders related to electric vehicle fires in underpasses. Through this, the guidelines for responding to electric vehicle fires on underground roads were established.

A Study on the Application of Smart Safety Helmets and Environmental Sensors in Ships (선박 내 스마트 안전모 및 환경 센서 적용에 관한 연구)

  • Do-Hyeong Kim;Yeon-Chul Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.82-89
    • /
    • 2023
  • Due to the characteristics of ship structure, the compartment structure is complicated and narrow, so safety accidents frequently occur during the work process. The main causes of accidents include structural collisions, falling objects, toxic substance leaks, fires, explosions, asphyxiation, and more. Understanding the on-site conditions of workers during accidents is crucial for mitigating damages. In order to ensure safety, the on-site situation is monitored using CCTV in the ship, but it is difficult to prevent accidents with the existing method. To address this issue, a smart safety helmet equipped with location identification and voice/video communication capabilities is being developed as a safety technology. Additionally, the smart safety helmet incorporates environmental sensors for temperature, humidity, vibration, noise, tilt (gyro sensor), and gas detection within the work area. These sensors can notify workers wearing the smart safety helmet of hazardous situations. By utilizing the smart safety helmet and environmental sensors, the safety of workers aboard ships can be enhanced.

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions (가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰)

  • Minju Kim;Jeewon Lee;Sangki Kwon
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.73-92
    • /
    • 2023
  • With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

The Current State and Legal Issues of Online Crimes Related to Children and Adolescents

  • Hyoung-ryul Kim
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.34 no.4
    • /
    • pp.222-228
    • /
    • 2023
  • There are two categories of online crimes related to children and adolescents: those committed by adolescents and those committed against children and adolescents. While recent trends in criminal law show consensus on strengthening punishment in cases of crimes against children and adolescents, there are mixed stances in cases of juvenile delinquency. One perspective emphasizes strict punishment, whereas the other emphasizes dispositions aligned with human rights. While various forms of online crime share the commonality in that the main part of the criminal act occurs online, they can be categorized into three types: those seeking financial gain, those driven by sexual motives, and those engaged in bullying. Among these, crimes driven by sexual motives are the most serious. Second-hand trading fraud and conditional (sexual) meeting fraud fall under the category of seeking financial gain and occur frequently. Crimes driven by sexual motives include obscenity via telecommunication, filming with discrete cameras, child and adolescent sexual exploitation material, fake video distribution, and blackmail/coercion using intimate images/videos ("sextortion"). These crimes lead to various legal issues such as whether to view vulgar acronyms or body cams that teenagers frequently use as simple subcultures or crimes, what criteria should be applied to judge whether a recorded material induces sexual desire or shame, and at what stage sexual grooming becomes punishable. For example, sniping posts, KakaoTalk prisons, and chat room explosions are tricky issues, as they may or may not be punished depending on the case. Particular caution should be exercised against the indiscriminate application of a strict punishment-oriented approach to the juvenile justice system, which is being discussed in relation to online sexual offenses. In the punishment case of online crime, juvenile offenders with a high potential for future improvement and reform must be treated with special consideration.

A Study on Impact Resistance Properties with Composition Materials and Installation Conditions of Protective Panel (방호 패널의 구성 재료 및 설치 조건에 따른 내충격 특성에 관한 연구)

  • Seok, Won-Kyun;Kim, Young-Sun;Lee, Yae-Chan;Nam, Jeong-Soo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.715-726
    • /
    • 2023
  • This study suggested that protective panels should be installed as sacrificial members as a safety design method for structures with potential explosions such as hydrogen charging stations to minimize direct damage to the structure and have resilience. To this end, the focus of the experiment is on quantitatively evaluating the impact of the structure when the protection panel is installed closely or spaced apart from the structure in a high-speed collision situation of the projectile. The experimental design used steel plates instead of concrete structural members mainly used in the past for excellent reproducibility, and the impact of structural members was compared and analyzed through deformation differences on the back of the steel plate. In addition, the impact of changes in the physical properties of the elastic body used as a separation material for the protective member and the difference in shock wave transmission time according to the protective member and the elastic body on the structural member was investigated.