• Title/Summary/Keyword: Experimental modal parameter

Search Result 89, Processing Time 0.026 seconds

Parameter Analysis of Rotor Shape Modification for Reduction of Squeal Noise (브레이크의 스퀼 저감을 위한 로터 형상변경 파라메터 해석)

  • Lee, Hyun-Young;Oh, Jae-Eung;Cha, Byeong-Gyu;Joe, Yong-Goo;Lee, Jung-Youn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.820-825
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, finite element parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and simulation results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric rotor simulation. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF

Vibration analysis and FE model updating of lightweight steel floors in full-scale prefabricated building

  • Petrovic-Kotur, Smiljana P.;Pavic, Aleksandar P.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.277-300
    • /
    • 2016
  • Cold-formed steel (CFS) sections are becoming an increasingly popular solution for constructing floors in residential, healthcare and education buildings. Their reduced weight, however, makes them prone to excessive vibrations, increasing the need for accurate prediction of CFS floor modal properties. By combining experimental modal analysis of a full-scale CFS framed building and its floors and their numerical finite element (FE) modelling this paper demonstrates that the existing methods (based on the best engineering judgement) for predicting CFS floor modal properties are unreliable. They can yield over 40% difference between the predicted and measured natural frequencies for important modes of vibration. This is because the methods were adopted from other floor types (e.g., timber or standard steel-concrete composite floors) and do not take into account specific features of CFS floors. Using the adjusted and then updated FE model, featuring semi-rigid connections led to markedly improved results. The first four measured and calculated CFS floor natural frequencies matched exactly and all relevant modal assurance criterion (MAC) values were above 90%. The introduction of flexible supports and more realistic modelling of the floor boundary conditions, as well as non-structural $fa{\c{c}}ade$ walls, proved to be crucial in the development of the new more successful modelling strategy. The process used to develop 10 identified and experimentally verified FE modelling parameters is based on published information and parameter adjustment resulting from FE model updating. This can be utilised for future design of similar lightweight steel floors in prefabricated buildings when checking their vibration serviceability, likely to be their governing design criterion.

A Experimental study on natural frequency measurement of passenger car tire under the load and rotation (하중을 받고 회전하는 승용차 타이어의 고유진동수 측정에 관한 실험적 연구)

  • 김병삼;홍동표;김동현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.601-606
    • /
    • 1993
  • The natural frequency measurement of passenger car tire under the load and rotation are studied. In order to obtain theoretical natural frequency and mode shape, the plane vibration of a tire is modeled to that of circular beam. By using the Tickling method based on Hamilton's principle, theoretical results are determined by considering tension force due to tire inflation pressure, rotational velocity and tangential, radial stiffness. Modal parameters varying the inflation pressure, load, rotational velocity are determined experimentally by using frequency response function method. The results show that experimental conditions are parameter for shifting of natural frequency.

  • PDF

Experimental Study on Modal Parameter Estimation of Structures (구조물의 자유진동특성 추정을 위한 실험적 연구)

  • 윤정방;이형진
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.137-144
    • /
    • 1994
  • As for the safety evaluation of existing large-scale structures, methods for the estimation of structural and dynamic properties are studied. Sequential prediction error method in time domain and frequency response function estimators in frequency domain are examined. For this purpose, impact tests are performed on a steel frame structure with 2 bays and 3 floors. Results from both methods are found to be consistent to each others. However those from the finite-element analysis are slightly different from the experimental results. The discrepancies may be caused by the improper modeling of the complex behavior at the connection joints of the model structure.

  • PDF

Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification (진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

Seismic Behavior of Steel Structure with Added Viscoelastic Dampers under Strong Earthquake Ground Motions (점탄성 감쇠기를 설치한 강구조 건물의 강지진 하중에 의한 거동 연구)

  • Oh, Soon Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.111-120
    • /
    • 1993
  • This paper summarizes an experimental and analytical study on the application of viscoelastic dampers as energy dissipation devices in structural applications. It can be concluded the viscoelastic dampers are effective in reducing excessive vibrations of structures under strong earthquake ground motions. It is also found that the modal strain energy method can be used to reliably predict the equivalent structural damping, and the seismic response of a viscoelastically damped structure can be accurately estimated by conventional modal analysis techniques. Based on the above studies, a design procedure for viscoelastically damped structures is presented. This design procedure fits naturally into the conventional structural design flow chart by including damping ratio as an additional design parameter.

  • PDF

Loosely supported multi-span tube damping according to the support clearance (지지점 간극을 갖는 다점지지 관의 지지점 간극 크기에 따른 감쇠특성 비교)

  • Lee, Kanghee;Kang, Heungseok;Shin, Changhwan;Kim, Jaeyong;Lee, Chiyoung;Park, Taejung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.402-403
    • /
    • 2014
  • Damping of multi-span tube with loose supports according to the finite support clearances is investigated through the experimental modal analysis. Loose intermediate support leads to strong nonlinearity in tube dynamics, provides statistical nature, and increases tube damping through impacting and friction at the supports. Fraction of critical damping was estimated by the modal curve fitting to parameter estimation from the measured frequency response functions. Magnitude of random excitation force, which can reproduce the in-situ excitation in operating environment, was maintained as constant value with a fine tolerance during vibration testing. Range of input force was carefully selected to cover from the low magnitude excitation for linearly behaved tube motion to high magnitude of force for nonlinearly-behaved tube motion. Estimated critical damping ratio shows scatters in data and tends to increase as the magnitude of rising force and decrease with upward frequency variation. Larger size of support gap increases multi-span tube damping for high magnitude of excitation.

  • PDF

Distributed plasticity approach for nonlinear analysis of nuclear power plant equipment: Experimental and numerical studies

  • Tran, Thanh-Tuan;Salman, Kashif;Kim, Dookie
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3100-3111
    • /
    • 2021
  • Numerical modeling for the safety-related equipment used in a nuclear power plant (i.e., cabinet facilities) plays an essential role in seismic risk assessment. A full finite element model is often time-consuming for nonlinear time history analysis due to its computational modeling complexity. Thus, this study aims to generate a simplified model that can capture the nonlinear behavior of the electrical cabinet. Accordingly, the distributed plasticity approach was utilized to examine the stiffness-degradation effect caused by the local buckling of the structure. The inherent dynamic characteristics of the numerical model were validated against the experimental test. The outcomes indicate that the proposed model can adequately represent the significant behavior of the structure, and it is preferred in practice to perform the nonlinear analysis of the cabinet. Further investigations were carried out to evaluate the seismic behavior of the cabinet under the influence of the constitutive law of material models. Three available models in OpenSees (i.e., linear, bilinear, and Giuffre-Menegotto-Pinto (GMP) model) were considered to provide an enhanced understating of the seismic responses of the cabinet. It was found that the material nonlinearity, which is the function of its smoothness, is the most effective parameter for the structural analysis of the cabinet. Also, it showed that implementing nonlinear models reduces the seismic response of the cabinet considerably in comparison with the linear model.

On the Number of Modes Required to Observe Forces in Flexible Structures (유연 구조물에서 반력 평가를 위해 요구되는 모드의 수)

  • Kim, Joo-Hyung;Kim, Sang-Sup
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.562-567
    • /
    • 2001
  • The number of required modes to provide accurate force information in a truncated model of a flexible structure is investigated. In the case of modal truncation of a distributed parameter system, the difference in convergence rates between displacements and forces is discussed. The residual flexibility, a term from past literature, is used to recapture some of the lost force information in a truncated model. This paper presents numerical and experimental results of a study where the residual flexibility is used in conjunction with a Kalman filter so that accurate force information may be obtained from a small set of displacement measurements with a reduced-order model. The motivation for this paper is to be able to obtain accurate information about unmeasurable dynamic reaction forces in a rotating machine for diagnostic and control purposes.

  • PDF

Vibration Source Identification and Finite Element Model Construction of Optical Disk Drive (광디스크 드라이브의 진동 원인 규명 및 유한요소 모델 구축)

  • Oh, Won-Seok;Lim, Seung-Ho;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil;Yoo, Seugng-Hon;Lee, Han-Baek
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • Optical disk drives (ODDs) are subjected to vibrations caused by the high-speed rotation of the optical disk, and these vibrations can be excessive and reduce the read/write performance. Elastic rubber mounts with cushioning materials are often used to minimize these problems. In this paper, the source of vibrations was identified by experimental modal tests and high-speed photography. Structural modifications were made based on a lumped parameter model and a finite element model.