• Title/Summary/Keyword: Experimental design and analysis

Search Result 5,413, Processing Time 0.039 seconds

A Property Evaluation of Machinable Ceramics by M/C Machining and Multiple Linear Regression Method (M/C 가공과 회귀분석방법에 의한 가공성 세라믹의 특성 평가)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In machining of ceramic materials, they are very difficult-to cut materials because of there high strength and hardness. Machining of ceramics are characterized by cracking and brittle fracture. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). This paper focuses on machinability evaluation of machinable ceramics for products with CNC machining center. Thus, in this paper, experiment applying cutting parameters is performed based on experimental design method. A design and analysis of experiments is conducted to study the effects of these parameters on the surface roughness by using the S/N ratio, analysis of ANOVA, and F-test. And multiple linear regression analysis is applied to compare experimental with predicted data in consideration of surface roughness. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

Strength Estimation of Stylene-Butadien Latex Modified Concrete by Factorial Experimental Design (요인 실험분석에 의한 SB 라텍스 개질 콘크리트의 강도예측)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Hong, Chang-Woo
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.307-315
    • /
    • 2001
  • The purpose of this study was to provide the evaluation and prediction of strengths of SB latex modified concrete(LMC) using a statistical method and factorial experimental design method. The main experimental variables were as follows ; W/C ( 4 levels ; 31, 33, 35, 42%), S/a( 2 levels ; 55, 58%) and L/C(2 levels ; 5, 15%). The compressive strength and flexural strength of LMC were selected as a factor of response. The statistical method was carried out to analyze the results, together with factorial experimental design method and response surface method. The analysis showed that if L/C had been 15%, W/C appeared to be around 33% to achieve the design strength of $350kgf/cm^2$. In this case, the flexural strength and the slump came to around $68kgf/cm^2$ and 18cm, respectively. Eventhough the L/C varied, the design strength and W/C could be predictable together with slump value and flexural strength. As a result of series of experiments in this study, W/C and L/C were proved to be the main factors influencing on the compressive and flexural strength of LMC. Both of strength and slump values could be predictable from the mixing proportion of LMC.

  • PDF

Response surface analysis of removal of a textile dye by a Turkish coal powder

  • Khataee, Alireza;Alidokht, Leila;Hassani, Aydin;Karaca, Semra
    • Advances in environmental research
    • /
    • v.2 no.4
    • /
    • pp.291-308
    • /
    • 2013
  • In the present study, an experimental design methodology was used to optimize the adsorptive removal of Basic Yellow 13 (BY13) using Turkish coal powder. A central composite design (CCD) consisting of 31 experiments was employed to evaluate the simple and combined effects of the four independent variables, initial dye concentration (mg/L), adsorbent dosage (g/L), temperature ($^{\circ}C$) and contact time (min) on the color removal (CR) efficiency (%) and optimizing the process response. Analysis of variance (ANOVA) showed a high coefficient of determination value ($R^2=0.947$) and satisfactory prediction of the polynomial regression model was derived. Results indicated that the CR efficiency was not significantly affected by temperature in the range of $12-60^{\circ}C$. While all other variables significantly influenced response. The highest CR (95.14%), estimated by multivariate experimental design, was found at the optimal experimental conditions of initial dye concentration 30 mg/L, adsorbent dosage 1.5 g/L, temperature $25^{\circ}C$ and contact time 10 min.

Understanding Bayesian Experimental Design with Its Applications (베이지안 실험계획법의 이해와 응용)

  • Lee, Gunhee
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1029-1038
    • /
    • 2014
  • Bayesian experimental design is a useful concept in applied statistics for the design of efficient experiments especially if prior knowledge in the experiment is available. However, a theoretical or numerical approach is not simple to implement. We review the concept of a Bayesian experiment approach for linear and nonlinear statistical models. We investigate relationships between prior knowledge and optimal design to identify Bayesian experimental design process characteristics. A balanced design is important if we do not have prior knowledge; however, prior knowledge is important in design and expert opinions should reflect an efficient analysis. Care should be taken if we set a small sample size with a vague improper prior since both Bayesian design and non-Bayesian design provide incorrect solutions.

Experimental Analysis on the Resonator in the Rotary Compressor (회전압축기 공명기에 관한 실험적 연구)

  • Lee, Byung-Chan;Kim, Jin-Dong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1410-1415
    • /
    • 2000
  • This paper introduces the experimental analysis of the resonator in the rolling piston type compressor for air conditioner. The resonator located between cylinder and bearing is a major factor in the noise reduction of the rotary compressor. Several shapes for the resonator which can be built in the space limitations are derived. Then optimal resonator type for the noise reduction is determined by noise tests. 6 design parameters of the type are found and optimal level for each design factor is deduced from Taguchi method.

  • PDF

Analysis of Quantitative Research Published by Korean Journal of Adult Nursing (1989~2011) (성인간호학회지(1989~2011)에 게재된 양적 연구의 동향 분석)

  • Kim, Young-Kyeong;Hwang, Sun-Kyung;Kim, In-Ja;Kim, Ju-Sung;Oh, Hee-Young;Lee, Jong-Kyung;Jung, Eun-Sook;Choi, Gui-Yun;Choi, Ja-Yun
    • Korean Journal of Adult Nursing
    • /
    • v.24 no.1
    • /
    • pp.85-97
    • /
    • 2012
  • Purpose: The aims of this study were to examine the trend of quantitative study in Korean Journal of Adult Nursing published between 1989-2011 and to provide future directions for nursing research in adult health nursing. Methods: A total of 883 published articles were reviewed, and main subject and the methodology were analyzed using descriptive statistics. Results: The most frequently cited keywords were elderly, quality of life, depression, knowledge, stress and anxiety. The survey study was the most popular research design (67.6%) followed by experimental (26.5%), and methodological study (5.5%) design. Over 80% of studies with translated or developed instruments reported reliability for psychometric analysis, while only 18% of the studies reported validity of the instruments they used. In the periods of 2006~2011, significantly more studies utilized experimental design, obtained IRB approval and written consent, and included power analysis for sample size calculation. In recent experimental study, educational program and complimentary therapy were the two most frequently used interventions. Conclusion: Through the analysis of nursing studies published in Korean Journal of Adult Nursing, we found the number of experimental studies has increased and methodological rigor has improved in recent years.

Off-Design Performance Analysis of a Counterflow-Type Cooling Tower (대향류형 냉각탑의 탈설계 성능해석)

  • 신지영;손영석;한동원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.191-198
    • /
    • 2002
  • Cooling tower design procedure was set up using conventional Merkel theory, The design data could be different depending on the characteristic curve that the engineer chose. It reveals that the consistent and reasonable criteria are required based on the exact information of the cooling tower Performance. In this study, an off-design performance analysis program for a counterflow-type cooling tower was developed and verified by comparing with experimental data. Also, the off-design performance with various operating conditions was analyzed.

Optimization of front Bump Steer for Improving Vehicle Handling Performances (차량의 조종 안정성 향상을 위한 전륜 범프 스터어 최적화)

  • 서권희;이윤기;박래석;박상서;윤희석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • This paper presents a method to optimize the bump steer characteristics (the change of toe angle with vertical wheel travel) with respect to hard points in the double wishbone front suspension of the four-wheel-drive vehicle using the design of experiment, multibody dynamics simulation, and optimum design program. Front and rear suspensions are modeled as the interconnection of rigid bodies by kinematic joints and force elements using DADS. The design variables with respect to the kinematic characteristics are obtained through the experimental design sensitivity analysis. An object function is defined as the area of absolute differences between the desired and experimental toe angle. By the design of experiment and regression analysis, the regression model function of bump steer characteristics is extracted. The design variables that make the toe angle optimized are selected using the optimum design program DOT. The lane change simulations and tests of the full vehicle models are implemented to evaluate the improvement of vehicle handling performances by the optimization of front bump steer characteristics. The results of the lane change simulations show that the vehicle with optimized bump steer has the weaker understeer tendency than the vehicle with initial bump steer.

  • PDF

Analysis and Design of Permanent Magnet Motor by the Improved Permeance Method (개선된 퍼미언스법에 의한 영구자석 회전기의 해석 및 설계)

  • Chung, Tae-Kyung;Oh, Seung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.175-178
    • /
    • 1998
  • To analyze and design a motor magnetic permeance method and numerical methods such as F.E.M. are used. In this thesis, DC motor is analyzed and designed by the permeance method. Modified Carter coefficient and leakage permeance are presented. A magnetic flux path can be approximated properly by using a equivalent ${\pi}$ network representation adding the leakage coefficient. Finally, effective and easy-to-use program is realized. Experimental analysis and design with an actual motor proves that this program produces reliable results. There are many experimental coefficients in this algorithm and it makes some design errors. Using of this program, an motor engineer can obtain satisfactory characteristic and design value by inputting initial data at once.

  • PDF

The Shape Optimization of MIL-S-46119 Ring Obturator Under the High Pressure (고압을 받는 MIL-S-46119 원형 밀폐링의 형상 최적화)

  • Chae, Je-Wook;Lee, Young-Shin;Park, Tae-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • The optimal design for the shape of MIL-S-46119 ring obturator under the high pressure using parameter stud:』 on the stress analysis considering effects of design variable is presented, and it is compared to experimental results. The trends of parametric study are in good agreement with the experimental results. The more thickness the higher stress. The more taper the higher stress. And maximum stress of circumferential surface is larger than maximum stress of forward surface. The design variable!; are such as thickness, taper, radius of shape of the obturator. In order to optimize the shape of obturation ring, the weight is maximized subject to maximum stress of the obturator within allowable stress. The design constraints are geometric elements of design variables.