• 제목/요약/키워드: Experimental Modal Analysis (EMA)

검색결과 17건 처리시간 0.02초

회전자유도 보간에 의한 모드합성법 (Modal Synthesis Method Using Interpolated Rotational DOF)

  • 장경진;지태한;박영필
    • 소음진동
    • /
    • 제5권4호
    • /
    • pp.503-514
    • /
    • 1995
  • In the case of performing experimental modal analysis(EMA) and finite- element analysis(EFA) for a whole structure of automotive body that is composed of many complex parts, a trouble may arise from the calculation time, the capacity of memory in computers and the experimental conditions, etc. In this paper, for the vibrational analysis of automotive body model, the efficient modal synthesis method by means of dividing the whole structure into two parts and performing EMA and FEA for each part is studied. In addition, the method based on Lagrange interpolation is proposed for approximating rotational degrees-of-freedom information and linking FEA with EMA. In result, by measuring translational degrees-of-freedom information of only few points and adopting only few modes, the linking method based on Lagrange interpolation turned out to be efficient and accurate in the low frequency range.

  • PDF

다중전달 함수합성법을 이용한 구조물의 동특성 해석 (Structural Dynamic Analysis using Multi-FRF Synthesis Method)

  • 정재훈;지태한;박영필
    • 소음진동
    • /
    • 제8권1호
    • /
    • pp.139-145
    • /
    • 1998
  • A great deal of effort has been invested in upgrading the performance and the efficiency of dynamic analysis of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, the performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircrafts, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure are widely used. Through linking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned strucutres can be proposed. In this study, a new algorithm of substructre synthesis method, Multi-FRF synthesis method, is proposed to analyze a structure composed of many substructures.

  • PDF

Application assessments of concrete piezoelectric smart module in civil engineering

  • Zhang, Nan;Su, Huaizhi
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.499-512
    • /
    • 2017
  • Traditional structural dynamic analysis and Structural Health Monitoring (SHM) of large scale concrete civil structures rely on manufactured embedding transducers to obtain structural dynamic properties. However, the embedding of manufactured transducers is very expensive and low efficiency for signal acquisition. In dynamic structural analysis and SHM areas, piezoelectric transducers are more and more popular due to the advantages like quick response, low cost and adaptability to different sizes. In this paper, the applicable feasibility assessment of the designed "artificial" piezoelectric transducers called Concrete Piezoelectric Smart Module (CPSM) in dynamic structural analysis is performed via three major experiments. Experimental Modal Analysis (EMA) based on Ibrahim Time Domain (ITD) Method is applied to experimentally extract modal parameters. Numerical modal analysis by finite element method (FEM) modeling is also performed for comparison. First ten order modal parameters are identified by EMA using CPSMs, PCBs and FEM modeling. Comparisons are made between CPSMs and PCBs, between FEM and CPSMs extracted modal parameters. Results show that Power Spectral Density by CPSMs and PCBs are similar, CPSMs acquired signal amplitudes can be used to predict concrete compressive strength. Modal parameter (natural frequencies) identified from CPSMs acquired signal and PCBs acquired signal are different in a very small range (~3%), and extracted natural frequencies from CPSMs acquired signal and FEM results are in an allowable small range (~5%) as well. Therefore, CPSMs are applicable for signal acquisition of dynamic responses and can be used in dynamic modal analysis, structural health monitoring and related areas.

M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구 (The study of dynamic safety using M&S for Integrated Electro-Mechanical Actuator installed on aircraft)

  • 이석규;이병호;이증;강동석;최관호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.36-41
    • /
    • 2014
  • Electro-Mechanical Actuator installed on aircraft consists of a decelerator which magnifies the torque to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. EMA controls aircraft attitued, position, landing, takeoff, etc. It is important part of a aircraft. Aircraft maneuvering make vibration of EMA. Vibration may cause the vibration fatigue. For that reason, it is necessary to analyze the system safety. In this paper, first EMA is modeled in finite element method and analyzed the response from input vibration. second EMA is tested and analyzed from modal experimental data. third EMA Fe model is updated and re analyzed. and EMA is verified safety with $3{\sigma}$ stress and S/N curves.

  • PDF

부분구조응답함수감소법을 이용한 동적구조변경 (Structural Dynamic Modification Using substructure Response Function Sensitivity Method(SRFSM))

  • 지태한;박영필
    • 대한기계학회논문집A
    • /
    • 제20권12호
    • /
    • pp.3782-3791
    • /
    • 1996
  • A great deal of effert has been invested in upgrading the performance and the efficiency of mechanical structures. Using experimental modal analysis(EMA) or finite element analysis(FEA) data of mechanical structures, this performance and efficiency can be effectively evaluated. In order to analyze complex structures such as automobiles and aircraft, for the sake of computing efficiency, the dynamic substructuring techniques that allow to predict the dynamic behavior of a structure based on that of the composing structures, are widely used. By llinking a modal model obtained from EMA and an analytical model obtained from FEA, the best conditioned structures can be desinged. In this paper, a new algorithm for structural dynamic modification-SRFSM (substructure response function sensitivity method) is proposed by linking frequency responce function synthesis and response function sensitivity. A mehtod to obtain response function sensitivity using direct derivative of mechanical impedance, is also used.

승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구 (Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology)

  • 송민근;이상권;서상훈
    • 한국소음진동공학회논문집
    • /
    • 제18권9호
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

파워트레인 구조진동으로 인한 방사소음 예측에 관한 연구 (Prediction of the noise radiated by the structural vibration of a powertrain)

  • 오기석;이상권;김성종
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.891-896
    • /
    • 2007
  • Noise radiated from the powertrain is an important factor of the vehicle interior noise. In this paper, Finite Element(FE) model and Boundary Element(BE) models were created. The FE model was updated by doing a correlation between experimental modal analysis(EMA) values and finite element analysis(FEA) values. Main bearing forces were calculated using a running modal data. The forced vibration analysis was simulated using the software MSC/NASTRAN, and the radiated noise was predicted using the software LMS/VIRTUAL.LAB.

  • PDF

A hybrid singular value decomposition and deep belief network approach to detect damages in plates

  • Jinshang Sun;Qizhe Lin;Hu Jiang;Jiawei Xiang
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.713-727
    • /
    • 2024
  • Damage detection in structures using the change of modal parameters (modal shapes and natural frequencies) has achieved satisfactory results. However, as modal shapes and natural frequencies alone may not provide enough information to accurately detect damages. Therefore, a hybrid singular value decomposition and deep belief network approach is developed to effectively identify damages in aluminum plate structures. Firstly, damage locations are determined using singular value decomposition (SVD) to reveal the singularities of measured displacement modal shapes. Secondly, using experimental modal analysis (EMA) to measure the natural frequencies of damaged aluminum plates as inputs, deep belief network (DBN) is employed to search damage severities from the damage evaluation database, which are calculated using finite element method (FEM). Both simulations and experimental investigations are performed to evaluate the performance of the presented hybrid method. Several damage cases in a simply supported aluminum plate show that the presented method is effective to identify multiple damages in aluminum plates with reasonable precision.

특이값 분해와 고유치해석을 이용한 유한요소모델의 개선 (Updating Algorithms of Finite Element Model Using Singular Value Decomposition and Eigenanalysis)

  • 김홍준;박영필
    • 소음진동
    • /
    • 제9권1호
    • /
    • pp.163-173
    • /
    • 1999
  • Precise and reasonable modelling is necessary and indispensable to the analysis of dynamic characteristics of mechanical structures. Also. the effective prediction of the change of modal properties due to the variation of design parameters is required especially for the application of finite element method to the structural dynamics problems. To meet those necessity and requirement, three model updating algorithms are proposed for finite element methods. Those algorithms are based on sensitivity analysis of the modal data obtained from experimental modal analysis(EMA) and analytical modal analysis(AMA). The adapted sensitivity analysis methods of the algorithms are 1)eigensensitivity(EGNS) method. 2)frequency response function sensitivity(FRFS) method. 3)sensitivity based element-by-element method (SBEEM), Singular value decomposition(SVD) is used for performing eigenanalysis and parameter estimation in the updating process. Those algorithms are applied to finite element of a plate and the updating capability of each algorithm is compared in terms of accuracy. reliability and stability of the updating process. It is shown that the model updating method using frequency response function is superior to the other methods in view of various updating capabilities.

  • PDF

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.