이 논문에서는 Swerling III 표적의 radar cross section (RCS)을 추정하기 위한 최대공산 (maximum likelihood (ML)) 추정방식을 제안하고 ML 추정값을 계산하기 위한 수치적 방법에 대해 검토하였다. 특히, ML 추정값을 계산하는 과정에서 expectation maximization (EM) 알고리즘에 바탕한 근사식을 활용하고, Monte Carlo 실험을 통해 이 수치적 방법의 정확도와 계산시간을 비교하여 가장 효율적인 방법을 제시한다. 이 결과는 기존에 제시된 방법의 성능과도 비교하여 제시한다. 나아가 Swerling I 표적의 경우에도 마찬가지로 동일한 방법이 가장 효율적이라는 것도 확인한다.
본 논문은 다중 경로 다중입력 (Multiple-input multiple-output : MIMO) 채널에서 space alternating generalized expectation-maximization(SAGE) 알고리즘을 이용하여 채널 파라미터 추정 성능을 확인한다. 성능을 비교하기 위해 781 대역의 제주도 측정지역에서의 채널 파라미터로부터 시변 채널 환경 채널 파라미터 추정을 SAGE 알고리즘을 통해 추정하고 원본 데이터와 비교한다. 이를 통해 SAGE 알고리즘의 성능을 확인할 수 있으며 일반적인 파라미터 계산보다 SAGE 알고리즘을 통해 추정하는 것이 지연 확산(Delay Spread), 도래각 확산(Arrive of Angular Spread)이 적어 정확 측면에서 성능이 뛰어나고 안정적이다.
IEIE Transactions on Smart Processing and Computing
/
제4권4호
/
pp.202-208
/
2015
In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.
본 논문은 온라인 전자문서환경에서 전통적 베이지안 통계기반 문서분류시스템의 분류성능을 개선하기 위해 EM(Expectation Maximization) 가속 알고리즘을 접목한 방법을 제안한다. 기계학습 기반의 문서분류시스템의 중요한 문제 중의 하나는 양질의 학습문서를 확보하는 것이다. EM 알고리즘은 소량의 학습문서집합으로 베이지안 문서분류 알고리즘의 성능을 높이는데 활용된다. 그러나 EM 알고리즘은 최적화 과정에서 느린 수렴성과 성능 저하 현상을 나타내는데, EM 알고리즘의 기본 가정을 따르지 않는 온라인 전자문서환경에서 특히 그러하다. 제안 기법의 주요 아이디어는 전통적 EM 알고리즘을 개선하기 위해 불확정성도 기반 선택적 샘플링 기법을 활용한 것이다. 성능평가를 위해 Reuter-21578 문서집합을 사용하여, 제안 알고리즘의 빠른 수렴성을 보이고 전통적 베이지안 알고리즘의 분류 정확성을 향상시켰음을 보인다.
본 논문에서 8mm 파장영역에서 획득한 수동형 밀리미터파 영상을 이용하여 위험물체를 은닉한 대상으로부터 금속표적(권총)을 자동으로 분할하고 식별하는 실시간 그래픽 사용자 인터페이스(Graphic User Interface)를 구현한다. 은닉된 표적의 분할 방법은 다단계 영상 분할 방법을 이용한다. 다단계 영상 분할의 각 단계는 밀리미터파 영상의 히스토그램을 가우시안 혼합 모델(Gaussian Mixture Model)로 가정하고 LBG 양자화(Vector-Quantization)과 추정(Expectation)-최대화(Maximization) 알고리즘으로 구성된다. 첫 번째 단계에서 배경으로부터 몸체 영역을 분할하고 두 번째 단계에서 몸체로부터 은닉된 물체 영역을 순차적으로 분할한다. 실험 및 시뮬레이션에서는 그래픽 사용자 인터페이스 프로그램을 이용하여 분석된 결과를 보여준다.
As the γ-ray energy increases, a reconstructed image becomes noisy and blurred due to the penetration of the γ-ray through the coded mask. Therefore, the thickness of the coded mask was increased for high energy regions, resulting in severely decreased the performance of the detection efficiency due to self-collimation by the mask. In order to overcome the limitation, a modified uniformly redundant array γ-ray imaging system using dual anti-mask method was developed, and its performance was compared and evaluated in high-energy radiation region. In the dual anti-mask method, the two shadow images, including the subtraction of background events, can simultaneously contribute to the reconstructed image. Moreover, the reconstructed images using each shadow image were integrated using a hybrid update maximum likelihood expectation maximization (h-MLEM). Using the quantitative evaluation method, the performance of the dual anti-mask method was compared with the previously developed collimation methods. As the shadow image which was subtracted the background events leads to a higher-quality reconstructed image, the reconstructed image of the dual anti-mask method showed high performance among the three collimation methods. Finally, the quantitative evaluation method proves that the performance of the dual anti-mask method was better than that of the previously reconstruction methods.
목적: 적혈구 혈액 풀 SPECT는 높은 특이도로 인하여, 간의 대표적인 양성 종양인 혈관종의 진단에 널리 사용되어 왔지만 낮은 해상도가 이 검사의 단점 중 하나였다. 최근 들어 ordered subset expectation maximization (OSEM)이라는 기술이 임상 핵의학 분야에서 단층영상의 재구성에 도입되고 있는 바, 저자들은 간 혈관종을 대상으로 기존의 역투사방식과 새로운 수정된 반복영상구성법인 OSEM을 비교하고자 하였다. 대상 및 방법: 24명의 간 혈관종 환자의 28개의 병변들 각각으로부터 이중 헤드 감마 카메라를 이용하여 단층영상 재구성을 위한 64개의 투사 영상을 얻었다. 이들 raw data는 LINUX운영체계의 개인용 컴퓨터에 보내서, 각각의 header file을 interfile로 대체하여 OSEM프로그램이 인식할 수 있도록 하였다. 최상의 영상을 구성하는 조건을 알아보기 위하여 다양한 subset 수(1, 2, 4, 8, 16 그리고 32) 및 반복계산 수 (1, 2, 4, 8, 그리고 16)하에서 재구성을 시도하여 4번의 반복계산과 16개의 subset일 때를 최적 조건으로 선택하였다. 이후 이 조건 하에서 OSEM과 역투사 방법으로 각각 모든 대상을 재구성한 후에 3명의 핵의학 및 방사선과 전문의가 특별한 정보 없이 모든 영상을 검토하였다. 결과: 28개의 병변을 맹검한 결과, 거의 모든 증례에서 OSEM이 역투사에 비교하여 최소한 대등하거나 우수한 영상의 질을 보여주었다. 비록 3 cm 이상의 큰 병변의 검출에는 차이가 없었으나 1.5-3 cm 크기의 병변 5개는 OSEM을 통하여서만 발견되었다. 하지만 1.5 cm 미만의 작은 병변 4개는 양쪽 모두에서 검출되지 않았다. 결론: OSEM은 작은 크기의 간 혈관종을 발견하는데 보다 높은 민감도를 보였으며 전체적인 영상의 질에 있어서도 보다 좋은 대조도와 윤곽을 보여주었다. OSEM은 이와 같은 장점 뿐만 아니라 높은 사양의 컴퓨터를 요하지않고 계산시간이 길지 않기 때문에 임상에서 간 혈관종의 진단을 위한 적혈구 혈액풀 SPECT에 쉽게 적용될 수 있는 좋은 방법으로 사료된다.
공격적인 성향의 운전은 자동차 사고의 주요한 원인이 된다. 기존 연구에서는 공격적 성향의 운전을 검출하기 위해, 주로 청년을 대상으로 연구가 이뤄졌으며 기계학습의 순수한 Clustering 또는 Classification 기법을 통해 이뤄졌다. 그러나 노인들은 취약한 신체적 조건에 의해 젊은 운전자와는 다른 운전 강도를 가지고 있어 기존의 방식으로는 검출이 불가능 하며, 데이터를 보정하는 등의 새로운 방법이 필요하다. 그리하여, 본 연구에서는 기존의 클러스터링 기법(K-means, Expectation - maximization algorithm)에, 새롭게 제안하는 ECA(Enhanced Clustering method for Acceleration data)기법을 추가하여, 주행 차량에 위치한 스마트폰으로부터 수집된 가속도 데이터를 분석하고 공격적인 운전 형태를 검출해 낸다. ECA는 모든 피험자의 데이터에서 K-means와 EM을 통해 검출된 군집군의 데이터 중 높은 강도의 데이터를 선별하여, 특징을 스케일링한 값을 통해 모델링한다. 본 방식을 통해 기존의 연구의 순수한 클러스터링 방식과는 달리, 모든 청장년 및 노인 실험 참가자 개인들의 공격적인 운전 데이터가 검출되었으며, 클러스터링 기법간의 비교를 통해 K-means 기법이 보다 높은 검출 효율을 갖고 있음을 확인했다. 또한, K-means 방식을 검출한 공격적인 운전 데이터에서는 젊은 운전자가 노인운전자에 비해 1.29배의 높은 운전 강도를 가지고 있음을 발견했다. 이와 같이 본 연구에서 제안된 방식은 낮은 운전 강도를 갖고 있는 노인의 데이터에서 공격적인 운전을 검출 가능하게 되었으며, 특히. 제안된 방법은 노인 운전자를 위한 맞춤형 안전운전 시스템을 구축이 가능하며, 추후 다양한 연구을 통해 이상 운전 상태를 검출하고 조기 경보하는데 활용이 가능할 것이다.
초음파 검사 방법은 여러 가지 물질들의 흠집이나 틈새, 티끌 등을 감지해내는데 널리 쓰이고 있다. 그 중 초음파 신호를 분석하는 절차는 전체의 신호처리 과정에서 아주 중요한 역할을 담당하고 있다. 이 논문은 최소평균 제곱 (LMS) 알고리즘을 이용하여 핵 전력 발전소에서 쓰이는 증기 발생기 튜브로부터 감지된 초음파 비파괴검사 신호를 분류 해내는 것에 관한 것이다. 이 초음파 신호는 튜브내의 흠집이나 틈새로부터 감지된 신호일수도 있고 또는 튜브 내의 침전물에 의해서 발생된 신호일 수도 있는데 이 두 가지 신호는 매우 유사하기 때문에 반드시 분류를 해내어 침전물에 의한 신호일 경우는 무방하지만 흠집이나 갈라진 틈새에서 나오는 신호일 경우는 더 이상의 오염이나 사고 등을 방지하기 위해 수리 또는 교체 등의 후속 조치로 이어져야 한다. 이러한 절차를 밟기 위하여 증기 발생기 튜브의 내부에서의 초음파 센서로부터 증기 발생기 튜브 사이의 거리를 측정하는데 모델링 기법에 기반한 deconvolution 방법이 제시되었으며 이 방법은 space alternating generalized expectation maximization (SAGE) 알고리즘을 이차원 미분 파라미터인 Hessian의 사용으로 인하여 수렴 속도가 빠른 Newton-Raphson 알고리즘과 함께 병행 사용하여 초음파 신호의 초점 도달 시간과 그 크기를 측정하여 초점 도달 거리에 따라 두 종류의 신호를 분류, 차별화 하는 기법이다. 이 알고리즘을 이용하여 흠집이나 틈새로부터 나온 신호일 경우와 퇴적물에 의해 나온 신호일 경우로 분류되었고 그 결과가 이 논문에 제시되었다.
본 논문은 감독분류 기법을 활용한 도로 네트워크 추출의 기본 과정인 트레이닝 자료의 추출과정을 자동화함으로써 감독분류를 활용한 도로 네트워크 추출 과정의 자동화에 기여할 수 있는 방법론의 개발을 목적으로 한다. 이를 위해 본 연구에서는 상호 기하보정 된 항공사진과 LIDAR 자료로부터 정사영상과 LIDAR 반사강도 영상을 제작하고, 기 구축된 수치지도를 활용하여 초기 트레이닝 자료를 자동으로 추출하였다. 하지만 위의 과정을 통하여 추출된 초기 트레이닝 자료는 기하보정과정에서 수반되는 기하학적 오차 및 다양한 개체들로 구성된 도로의 특성에 영향을 받아 다양한 분광특성을 포함하게 된다. 따라서 본 연구에서는 추출된 초기 트레이닝 자료에서 도로 추출의 기본이 되는 도로노면의 분광특성을 통계학적 기법인 기대최대화 알고리즘에 기초하여 효과적으로 결정하기 위한 방법론을 제안하였다. 또한 개발된 방법론의 평가를 위하여 동일지역에 대해 수동으로 취득한 트레이닝 자료와 본 연구에서 자동으로 추출한 자료를 비교 평가하여 정확도를 분석하였다. 실험결과에 대한 통계검증결과 본 논문에서 제안한 도로노면 트레이닝 자료 자동추출기법의 효용성을 증명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.