• Title/Summary/Keyword: Expansion-Deflection

Search Result 78, Processing Time 0.028 seconds

Deflection Limit based on Vibration Serviceability of Railway Bridges Considering the Correlation between Train Speed and Vertical Acceleration on Coach (열차의 주행속도와 차체연직가속도의 상관관계를 고려한 철도교량의 진동사용성 처짐 한계)

  • Jeon, Bub-Gyu;Kim, Nam-Sik;Kim, Sung-Il
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.545-554
    • /
    • 2011
  • In order to get dynamic serviceability of a train travelling on a railway bridge, comfort limits with the deflection of bridge and vertical acceleration on car body are proposed in Eurocode, Shinkansen design criteria, The design guideline of the Honam High-speed railway. The design guideline of the Honam High-speed railway has quoted Eurocode. Therefore it is expected that supplementation of comfort limit of railway bridge according to expansion of span length and the improvement traveling speed of trains in the future would relatively fall behind developed countries in railway. Therefore, in order to secure technological competitiveness in world market, the study was conducted to propose the deflection limit based on vibration serviceability of railway bridges that can consider bridge-train interaction and travelling speed increase. The parameter study and bridge-train dynamic interaction analysis was conducted to figure out the correlation of vertical acceleration on car body and bridge displacement according to the increase in travelling speed. Also, the trend of increasing vertical acceleration on car body according to the increase in travelling speed was confirmed, and the amplification coefficient of vertical acceleration on car body was suggested. And the deflection form and vibration of the bridge were assumed to be in harmonic motion, and transfer function and the amplification coefficient were used to develop the dynamic serviceability deflection limit of the high-speed railway bridge as a formula.

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

An analytical solution for static analysis of a simply supported moderately thick sandwich piezoelectric plate

  • Wu, Lanhe;Jiang, Zhiqing;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.641-654
    • /
    • 2004
  • This paper presents a theoretic model of a smart structure, a transversely isotropic piezoelectric thick square plate constructed with three laminas, piezoelectric-elastic-piezoelectric layer, by adopting the first order shear deformation plate theory and piezoelectric theory. This model assumes that the transverse displacements through thickness are linear, and the in-plane displacements in the mid-plane of the plate are not taken to be account. By using Fourier's series expansion, an exact Navier typed analytical solution for deflection and electric potential of the simply supported smart plate is obtained. The electric boundary conditions are being grounded along four vertical edges. The external voltage and non-external voltage applied on the surfaces of piezoelectric layers are all considered. The convergence of the present approach is carefully studied. Comparison studies are also made for verifying the accuracy and the applicability of the present method. Then some new results of the electric potentials and displacements are provided. Numerical results show that the electrostatic voltage is approximately linear in the thickness direction, while parabolic in the plate in-plane directions, for both the deflection and the electric voltage. These results are very useful for distributed sensing and finite element verification.

A study on the Thermal Buckling and Postbuckling of a Laminated Composite Beam with Embedded SMA Actuators (형상기억합금 선을 삽입한 복합적층 보의 열좌굴 및 좌굴후 거동에 관한 연구)

  • Choi, S.;Lee, J.J.;Lee, D.C.
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • In this paper, the thermal buckling and postbuckling behaviour of composite beam with embedded shape memory alloy (SMA) wires are investigated experimentally and analytically. The results of thermal buckling tests on uniformly heated, clamped, composite beam embedded with SMA wire actuators are presented and discussed in consideration of geometric imperfections, slenderness ratio of beam and embedding position of SMA wire actuators. The shape recovery force can reduce the thermal expansion of composite laminated beam, which result in increment of the critical buckling temperature and reduction of the lateral deflection of postbuckling behaviours. It is presented quantitatively on the temperature-load-deflection behaviour records how the shape recovery force affects the thermal buckling. The cross tangential method is suggested to calculate the critical buckling temperature on the temperature-deflection plot. Based on the experimental analysis, the new formula is also proposed to describe the critical buckling temperature of a laminated composite beam with embedded SMA wire actuators.

  • PDF

Concrete Aging-Dependent Deflection Analysis of Flexural Composite Members Using Sectional Analysis Method (단면해석법을 이용한 합성형 휨 부재의 재령 종속적 처짐해석)

  • Sung Won-Jin;Kim Jeong-Hyeon;Lee Yong-Hak
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.155-162
    • /
    • 2004
  • An analytical method to predict the time dependent flexural behavior of composite girder is presented based on sectional analysis. The time dependent constitutive relation accounting for the early-age concrete properties including maturing of elastic modulus, creep and shrinkage is derived in an incremental format by the first order Taylor series expansion. The sectional analysis calculates the axial and curvature strains based on the force and moment equilibriums. The deflection curve of the girder approximated by the quadratic polynomial function is calculated by applying to the proper boundary conditions in the consecutive segments. Numerical applications are made for the 3-span double composite steel box girder which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The calculated results are compared with those by finite element analysis results. Close agreement is observed between the two approaches.

Analysis of the Fundamental Behaviors of the Middle Slab in a Double-Deck Tunnel for Design Guide Development (복층터널 중간슬래브 설계 기준 마련을 위한 기본 거동 특성 분석)

  • Park, Hee Beom;Cho, Young Kyo;Lee, Young Hoon;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.63-72
    • /
    • 2017
  • PURPOSES : The purpose of this study is to investigate the fundamental behaviors such as stresses and deflections of the middle slab in a double-deck tunnel for the development of a middle slab design guide. METHODS : The middle slab has been divided into the following three different sections as according to its structural differences: the normal section, expansion joint section, and emergency passageway section. The normal section of middle slab represents the slab supported by brackets installed continuously along the longitudinal direction of tunnel lining. The expansion joint section refers to a discontinuity of middle slab due to the existence of a transverse expansion joint. The emergency passageway section has an empty rectangular space in the middle slab that acts as an exit in an emergency. The finite element analysis models of these three sections of middle slab have been developed to analyze their respective behaviors. RESULTS : The stresses and deflections of middle slab at the three different sections decrease as the slab thickness increases. The emergency passageway section yields the largest stresses and deflections, with the normal section yielding the smallest. CONCLUSIONS : The stress concentrations at the corners of the passageway rectangular space can be reduced by creating hunch areas at the corners. The stresses and deflections in the emergency passageway section can be significantly decreased by attaching beams under the middle slab in the passageway area.

Finite element analysis of viscoelastic flows in a domain with geometric singularities

  • Yoon, Sung-Ho;Kwon, Young-Don
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.3
    • /
    • pp.99-110
    • /
    • 2005
  • This work presents results of finite element analysis of isothermal incompressible creeping viscoelastic flows with the tensor-logarithmic formulation of the Leonov model especially for the planar geometry with singular comers in the domain. In the case of 4:1 contraction flow, for all 5 meshes we have obtained solutions over the Deborah number of 100, even though there exists slight decrease of convergence limit as the mesh becomes finer. From this analysis, singular behavior of the comer vortex has been clearly seen and proper interpolation of variables in terms of the logarithmic transformation is demonstrated. Solutions of 4:1:4 contraction/expansion flow are also presented, where there exists 2 singular comers. 5 different types spatial resolutions are also employed, in which convergent solutions are obtained over the Deborah number of 10. Although the convergence limit is rather low in comparison with the result of the contraction flow, the results presented herein seem to be the only numerical outcome available for this flow type. As the flow rate increases, the upstream vortex increases, but the downstream vortex decreases in their size. In addition, peculiar deflection of the streamlines near the exit comer has been found. When the spatial resolution is fine enough and the Deborah number is high, small lip vortex just before the exit comer has been observed. It seems to occur due to abrupt expansion of the elastic liquid through the constriction exit that accompanies sudden relaxation of elastic deformation.

A Study on 3-Dimensional Profilometry of Steam Generator Tube Using a New Eddy Current Probe

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.225-235
    • /
    • 2010
  • There are many types of the geometric transitions such as dent, bulge, protrusion, expansion, etc, on the inner and outer surfaces of heat exchanger tubes, steam generator tubes, and condenser tubes of nuclear power plants. Such geometric transition causes a local residual stress in heat exchanger tubes and acts as a structural factor accelerating the evolution of defects, in particular stress corrosion cracks. In the conventional eddy current test methods, the bobbin coil profilometry can provide 2-dimensional geometric information on the variation of the average inner diameter along the tube length, but the 3-dimensional distribution and the quantitative size of a local geometric transition existing in the tube cannot be measured. In this paper, a new eddy current probe, developed for the 3-dimensional profile measurement, is introduced and its superior performance is compared with that from the conventional bobbin coil profilometry for the various types of geometric transition. Also, the accuracy of the probe for the quantitative profile measurement is verified by comparing the results with that from the laser profilometry. It is expected that the new eddy current probe and techniques can be effectively used for an optimization of the tube expansion process, and the management of tubes with geometric transitions in service.

Application of Point Cloud Data for Transmission Power Line Monitoring (송전선 모니터링을 위한 포인트클라우드 데이터 활용)

  • Park, Joon-Kyu;Um, Dae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.224-229
    • /
    • 2018
  • Korea is experiencing a rapid increase in electricity consumption due to rapid economic development, and many power transmission towers are installed to provide smooth power supply. The high-voltage transmission line is mainly made of aluminum stranded wire, and the wire is loosely guided so that some deflection is maintained. The degree of deflection has a great influence on the quality of the construction and the life of the cable. As the time passes, the shrinkage and expansion occur repeatedly due to the weight of the cable and the surrounding environment. Therefore, periodic monitoring is essential for the management of the power transmission line. In this study, the power transmission lines were monitored using 3D laser scanning technology. The data of the power transmission line of the study area was acquired and the point cloud type 3D geospatial information of the transmission line was extracted through data processing. The length of the transmission line and deflection amount were calculated using the 3D geospatial information of the transmission line, and the distance from the surrounding obstacles could be calculated effectively. The result of study shows the utilization of 3D laser scanning technology for transmission line management. Future research will contribute to the efficiency of transmission line management if a transmission line monitoring system using 3D laser scanning technology is developed.

Large Displacement Polymer Bimorph Actuator for Out-of-Plane Motion

  • Jeung Won-Kyu;Choi Seog-Moon;Kim Yong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.263-267
    • /
    • 2006
  • A new thermal bimorph actuator for large out-of-plane displacement is designed, fabricated and tested. The deflecting beam is composed of polyimide, heater, and polyvinyl difluorides with tetrafluoroethylene (PVDF-TrFE). The large difference of coefficient of thermal expansion (CTE) of two polymer layers (polyimide and PVDF-TrFE) can generate a significant deflection with relatively small temperature rise. Compared to the most conventional micro actuators based on MEMS (micro-electro mechanical system) technology, a large displacement, over 1 mm at 20 mW, could be achieved. Additionally, we can achieve response time of 14.6 ms, resonance frequency of 12 Hz, and reliability ability of $10^5$ cycles. The proposed actuator can find applications where a large vertical displacement is needed while maintaining compact overall device size, such as a micro zooming lens, micro mirror, micro valve and optical application.