• Title/Summary/Keyword: Expansion Wave

Search Result 430, Processing Time 0.03 seconds

Numerical study on the interaction between unsteady compression and unsteady expansion wave (비정상 압축파와 비정상 팽창파의 간섭에 관한 수치해석적 연구)

  • Kim, Hui-Dong;Setoguchi, Toshiaki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.11
    • /
    • pp.1413-1421
    • /
    • 1997
  • A new control method to alleviate the impulsive noise at the exit of high-speed railway tunnel was applied to the compression wave at the entrance of the tunnel. This method uses the interaction phenomenon of unsteady expansion wave and unsteady compression wave. Unsteady expansion wave was assumed to be made instantaneously by the simple theory of shock tube. Total Variation Diminishing method was employed to solve the axisymmetric unsteady compressible flow field with a specified compression wave. Numerical results show that the maximum pressure gradient of the propagating compression wave decreases with increase of the wave length of the unsteady expansion wave. It is found that the impulsive noise reduction can be obtained when the unsteady expansion wave with a large wave length is emitted just before the train enters the tunnel. The present results give the possibility to reduce the impulsive noise at the exit of tunnel.

Prediction of the Fundamental Mode Lamb Wave Reflection from a Crack-Like Discontinuity Using Eigen-Mode Expansion

  • Park, Jae-Seok;Jang, Chang-Heui;Lee, Jong-Po
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.194-199
    • /
    • 2010
  • Based on the idea of eigen-mode expansion, a method to analyze the reflection of Lamb wave from a finite vertical discontinuity of plate is theoretically derived and verified by experiment. The theoretical prediction is in good agreement with the experimental result, and this strongly suggests that eigen-mode expansion method could be used for solution of inverse scattering problem for ultrasonic testing using Lamb wave.

앞전에서의 팽창파를 이용한 양항비의 개선에 대한 연구

  • Yun, Yeong-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.19-22
    • /
    • 2016
  • Leading edge thrust is generally caused by passing air flow from lower to upper surface and it is required to have sufficient angle of attack for notable leading edge thrust. To produce leading edge thrust at low angle of attack, utilizing expansion wave accompanying low pressure is able to be a solution. Fore structure changes the direction of flow, and this flow passes the projected edge. As a result, from a perspective of the edge, it is able to have high angle of attack, and artificial expansion wave is generated. This concept shows 9.48% increase of L/D in inviscid flow, at Mach number 1.3 and angle of attack $1^{\circ}$ in maximum, and this model shows the 3.98% of increasement at angle of attack $2^{\circ}$. Although advantage of the artificial expansion wave decreased as angle of attack increase, it shows the possibility of aerodynamical improvement with artificial expansion wave.

  • PDF

NEW EXACT TRAVELLING WAVE SOLUTIONS FOR SOME NONLINEAR EVOLUTION EQUATIONS

  • Lee, Youho;An, Jaeyoung;Lee, Mihye
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.359-370
    • /
    • 2011
  • In this work, we obtain new solitary wave solutions for some nonlinear partial differential equations. The Jacobi elliptic function rational expansion method is used to establish new solitary wave solutions for the combined KdV-mKdV and Klein-Gordon equations. The results reveal that Jacobi elliptic function rational expansion method is very effective and powerful tool for solving nonlinear evolution equations arising in mathematical physics.

Angular Momentum Effect of Electron Scattering with Reduced Angular Momentum Expansion (축약 각운동량 전개(Reduced Angular Momentum Expansion) 방법으로 해석한 전자 산란의 각 운동량 효과)

  • Kang, J.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.36-38
    • /
    • 2008
  • We calculate the electron scattering amplitude with reduced angular momentum expansion(RAME) and compare it with the plane wave approximation. By using WKB approximation it is shown that the curvature correction factor given by RAME is originated from the source wave centrifugal potential energy. The factor also can be understood as an effective wave number correction factor in plane wave approximation. Angular momentum and its relationship with scattering amplitude is explicitly shown.

NEW EXACT TRAVELLING WAVE SOLUTIONS OF SOME NONLIN EAR EVOLUTION EQUATIONS BY THE(G'/G)-EXPANSION METHOD

  • Lee, You-Ho;Lee, Mi-Hye;An, Jae-Young
    • Honam Mathematical Journal
    • /
    • v.33 no.2
    • /
    • pp.247-259
    • /
    • 2011
  • In this paper, the $(\frac{G'}{G})$-expansion method is used to construct new exact travelling wave solutions of some nonlinear evolution equations. The travelling wave solutions in general form are expressed by the hyperbolic functions, the trigonometric functions and the rational functions, as a result many previously known solitary waves are recovered as special cases. The $(\frac{G'}{G})$-expansion method is direct, concise, and effective, and can be applied to man other nonlinear evolution equations arising in mathematical physics.

Effects of Nonequilibrium Condensation on an Oblique Shock Wave in a Supersonic Nozzle of Constant Expansion Rate (팽창률이 일정한 초음속 노즐흐름에 있어서 비평형 응축이 경사충격파에 미치는 영향)

  • 강창수;권순범;김병지;홍종우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1311-1319
    • /
    • 1990
  • For the purpose of preventing the flow undulation in the cascade of steam turbine, the blades are made into a constant expansion rate in static pressure. And the flow in those cascades is transonic or supersonic in the range of 0.7-2.0 in Mach number. As a consequence, an oblique shock wave, known as inner or outer edge shock wave, arises in the flow of cascades. Especially when the steam in cascades is in a state of high wetness, nonequilibrium condensation and condensation shock wave occur, and they give rise to an interference with oblique shock wave. In the present study the case of expansion of moist air through a supersonic nozzle of constant expansion rate, which behaves similar to that of wet steam, was adopted. The effect of nonequilibrium condensation on the oblique shock wave generated by placing the wedge into the supersonic part of the nozzle was investigated. Furthermore, the relationship between nonequilibrium condensation zone and incident point of the oblique shock wave, oblique shock wave angle, the variations of angles of incident and reflected shock waves due to the variation of initial stagnation supersaturation and the relationship between the height of Mach stem and initial stagnation supersaturation are discussed.

Numerical Study on the Effects of Pressure Wave Propagation for Tunnel Entrance Shape Change in High-Speed Railways (고속철도의 터널입구 형상변황에 따른 압력파동 현상에 관한 수치적 연구)

  • 목재균;백남욱;유재석;최윤호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.50-59
    • /
    • 1997
  • When a front head of train enters a tunnel at a high speed, compression wave is generated at tunnel entrance due to the confinement effect and propagated along the tunnel with sound of speed. The propagated compression wave is reflected at tunnel exit due to abrupt pressure change at passage. The reflected wave is expansion pressure wave. And when the rear head of train goes through the tunnel entrance, another expansion pressure wave is generated and propagated along the tunnel. The pressure drop occurs seriously around train when the two expansion pressure waves come cross on train in the tunnel. In order to reduce the pressure drop, the compression wave front must be controlled because the intensity and magnitude of pressure drop is nearly proportional to that of compression wave at tunnel entrance. This study relates to reduction of the pressure wave gradient with respect to tunnel entrance shape change with various kind of angle and rounding. The results show characteristics of wave propagation in tunnel, usefulness of characteristic curve to estimate proper time domain size in numerical study and measuring time in actual experiment. Also rounding is contributed to improve pressure wave front even if its radius is very small at tunnel entrance. In order to improve of pressure wave front at tunnel entrance, proper angle is prefered to rounding with big radius and an angle of around 14$^{\circ}$ is recommended according to this simulations, And it is expected to reduce additional pressure drop in tunnel when the location and the size of the internal space for attendant equipment are considered in advance.

  • PDF

Propagation Characteristics of Compression Waves Reflected from the Open End of a Duct

  • Kim, Heuy-Dong;Lee, Dong-Hoon;H. Kashimura;T. Setoguchi
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.718-725
    • /
    • 2003
  • The present study addresses the distortion of the compression wave reflected from an open end of a shock tube. An experiment is carried out using the simple shock tube with an open end Computational work is also performed to represent the experimented flows. The second-order Total Variation Diminishing scheme is employed to numerically solve the unsteady, axisy-mmetric, inviscid, compressible governing equations. Both the experimented and predicted results are in good agreement. The generation and development mechanisms of the compression wave, which Is reflected from the open end of the shock tube, are obtained in detail from the present computations. The effect of size of the baffle plate at the open-end that causes the reflection of the incident expansion wave is found negligible. A good correlation is obtained for transition of the reflected compression wave to a shock wave inside the tube. The present data show that for a given wave length of the incident expansion wave the transition of the reflected compression wave to a shock wave can be predicted with good accuracy.

NEW TRAVELING WAVE SOLUTIONS TO THE SEVENTH-ORDER SAWADA-KOTERA EQUATION

  • Feng, Jishe
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1431-1437
    • /
    • 2010
  • We use the (G'/G)-expansion method to seek the traveling wave solution of the Seventh-order Sawada-Kotera Equation. The solutions that we get are more general than the solutions given in literature. It is shown that the (G'/G)-expansion method provides a very effective and powerful mathematical tool for solving nonlinear equations in mathematical physics.