• Title/Summary/Keyword: Expanded relative uncertainty

Search Result 32, Processing Time 0.029 seconds

Development of a Metrological Atomic Force Microscope for the Length Measurements of Nanometer Range (나노미터 영역 길이 측정 위한 미터 소급성을 갖는 원자간력 현미경 개발)

  • 김종안;김재완;박병천;엄태봉;홍재완
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.75-82
    • /
    • 2004
  • A metrological atomic force microscope (M-AFM) was developed fur the length measurements of nanometer range, through the modification of a commercial AFM. To eliminate nonlinearity and crosstalk of the PZT tube scanner of the commercial AFM, a two-axis flexure hinge scanner employing built-in capacitive sensors is used for X-Y motion instead of PZT tube scanner. Then two-dimensional displacement of the scanner is measured using two-axis heterodyne laser interferometer to ensure the meter-traceability. Through the measurements of several specimens, we could verify the elimination of nonlinearity and crosstalk. The uncertainty of length measurements was estimated according to the Guide to the Expression of Uncertainty in Measurement. Among several sources of uncertainty, the primary one is the drift of laser interferometer output, which occurs mainly from the variation of refractive index of air and the thermal stability. The Abbe error, which is proportional to the measured length, is another primary uncertainty source coming from the parasitic motion of the scanner. The expanded uncertainty (k =2) of length measurements using the M-AFM is √(4.26)$^2$+(2.84${\times}$10$^{-4}$ ${\times}$L)$^2$(nm), where f is the measured length in nm. We also measured the pitch of one-dimensional grating and compared the results with those obtained by optical diffractometry. The relative difference between these results is less than 0.01 %.

Development of a Large Force Standard Machine with Built-in Force Transducers (내장형 힘 변환기를 이용한 대용량 힘 표준기 개발)

  • Gang, Dae-Im;Lee, Jeong-Tae;Song, Hu-Geun;Kim, Eom-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.667-675
    • /
    • 2000
  • Force measuring devices should be calibrated to guarantee their test results. In order to establish the force standards in Korea, deadweight machines of 5 kN, 20 kN, 100 kN and 500 kN capacity and a hydraulic force standard machine of 2 MN capacity were installed at the Korea Research Institute of Standards and Science(KRISS). As heavy industries in Korea have been developed, we should measure large forces over 2 MN capacity precisely in industries. We developed a 10 MN force standard machine with built-in force transducers which is more compact and cheaper than hydraulic force standard machines which have been widely used as large force standards in most national metrology laboratories. Test results reveal that the relative expanded uncertainty of the force machine is less than 4.1 $\times$ 10-4 in the range of 1 MN-4.5 MN.

Development of an Impact Force Measurement Device with an Attached Strain Gauge (스트레인게이지가 부착된 충격력 측정 장비 개발)

  • Jeong, Ik-Su
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.243-251
    • /
    • 2012
  • The purpose of this study was to develop an impact force measurement device in order to facilitate the acquisition of quantitative data for the analysis of various sporting events. The device was designed to include cylindrical aluminum supports of 220 mm diameter, which allows mounting and dismounting of the device on walls and frames. In addition, a hard sponge for impact absorption, as well as 4 springs, were attached to the plate. Both were attached to prevent psychological variables and injuries. When a subject applies force on the device, accurate data about the maximum repulsive force is acquired in real time, with a lag of only 0.001 s. The device was calibrated in four steps: (1) increase, (2) increase, (3) increase-decrease, and (4) increase-decrease. The maximum relative expanded uncertainty was 0.166%, indicating that the impact force measurement was sufficiently reliable. The proposed device can be applied to various sporting situations and is expected to be useful for studying kinetics.

Accurate Measurement of Arsenic in Laver by Gravimetric Standard Addition Method Combined with High Resolution Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Hyeon-Ji;Yim, Yong-Hyeon;Kim, Jeongkwon;Hwang, Euijin
    • Mass Spectrometry Letters
    • /
    • v.5 no.2
    • /
    • pp.57-61
    • /
    • 2014
  • A gravimetric standard addition method combined with internal standard calibration has been successfully developed for the accurate analysis of total arsenic in a laver candidate reference material. A model equation for the gravimetric standard addition approach using an internal standard was derived to determine arsenic content in samples. Handlings of samples, As standard and internal standard were carried out gravimetrically to avoid larger uncertainty and variability involved in the volumetric preparation. Germanium was selected as the internal standard because of its close mass to the arsenic to minimize mass-dependent bias in mass spectrometer. The ion signal ratios of $^{75}As^+$ to $^{72}Ge^+$ (or $^{73}Ge^+$) were measured in high resolution mode ($R{\geq}10,000$) to separate potential isobaric interferences by high resolution ICP/MS. For method validation, the developed method was applied to the analysis of arsenic content in the NMIJ 7402-a codfish certified reference material (CRM) and the result was $37.07mg{\cdot}kg^{-1}{\pm}0.45mg{\cdot}kg^{-1}$ which is in good agreement with the certified value, $36.7mg{\cdot}kg^{-1}{\pm}1.8mg{\cdot}kg^{-1}$. Finally, the certified value of the total arsenic in the candidate laver CRM was determined to be $47.15mg{\cdot}kg^{-1}{\pm}1.32mg{\cdot}kg^{-1}$ (k = 2.8 for 95% confidence level) which is an excellent result for arsenic measurement with only 2.8 % of relative expanded uncertainty.

Precision Control of a Torque Standard Machine Using Fuzzy Controller (퍼지제어기를 이용한 토크 표준기의 정밀제어)

  • Kim, Gab-Soon;Kang, Dae-Im
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.46-52
    • /
    • 2001
  • This study describes the precision control of the torque standard machine using a self-tuning fuzzy controller. The torque standard machine should generate the accurate torque for calibrating a torque sensor. In order to reduce the relative expanded uncertainty of the torque standard machine, when a weight is hanged to the end of the torque arm for generating the torque, the sloped torque arm should be accurately controlled to the horizontal level. If the slope of the torque arm is larger from the inaccurate control, the uncertainty of the torque standard machine due to control will be larger. This applies the inaccurate torque to a torque sensor to calibrate, and the measuring error of the torque sensor generate from it. Therefore the torque arm of the torque standard machine is accurately controlled. In this paper, the self-tuning fuzzy controller was designed using a fuzzy theory, and the torque arm of the torque standard machine was accurately controlled. The control gain of the fuzzy controller, that is the membership function size of the error, the membership function size of the error change and the membership function size of the controller were determined from the self-tuning. The control results of the torque standard machine were the overshoot within 0.0076mm, the rise time within 16.70sec and the steady state error within 0.0076mm.

  • PDF

Determination of trace boron in steels by prompt gamma-ray activation analysis (즉발감마선방사화분석법에 의한 철강시료 중의 붕소 측정)

  • Kim, I.J.;Cho, K.H.;Paul, R.L.
    • Analytical Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.302-306
    • /
    • 2009
  • A trace amount of boron in steel significantly influences its mechanical and physical properties. A prompt gamma ray activation analysis (PGAA) method is used to measure boron in low alloy steel samples of KRISS 101-01-C21~C26. NIST SRMs of 362, 364, 1761 and 1767 serve as the control standards to validate the measurement method. The measured values of the NIST SRMs are consistent with their certified values within the expected uncertainties, except for that of NIST SRM 362. Experimental uncertainties are evaluated according to the guidelines given by the International Organization for Standardization (ISO). The expanded uncertainties are calculated with a coverage factor of 2, at approximately 95% confidence level. The calculated relative expanded uncertainties of boron mass fractions are between 3% and 7% at the mg/kg level. The results are compared with the results measured by the solvent extraction-inductively coupled optical emission spectrometry (ICP/OES) method.

Development of primary reference gas mixtures of 18 volatile organic compounds in hazardous air pollutants (5 nmol/mol level) and their analytical methods

  • Kang, Ji Hwan;Kim, Yong Doo;Lee, Jinhong;Lee, Sangil
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.202-211
    • /
    • 2021
  • Volatile organic compounds (VOCs) in hazardous air pollutants (HAPs) have been regulated by the Air Pollution Control Act (1978) and their atmospheric concentrations have been monitored in 39 monitor sites in Korea. However, measurement standards of volatile organic compounds (VOCs) in HAPs at ambient levels have not been established in Korea. Primary reference gas mixtures (measurement standards) at ambient levels are required for accurately monitoring atmospheric VOCs in HAPs and managing their emissions. In this study, primary reference gas mixtures (PRMs) at 5 nmol/mol were developed in order to establish primary national standards of VOCs in HAPs at ambient levels. Primary reference gas mixtures (PRMs) were prepared in pressurized aluminum cylinders with special internal surface treatment using gravimetric method. Analytical methods using gas chromatography-flame ionization detector (GC-FID) coupled with a cryogenic preconcentrator were also developed to verify the consistency of gravimetrically prepared HAP VOCs PRMs. Three different columns installed in the GC-FID were evaluated and compared for the retention times and separation of eighteen target components in a chromatogram. Results show that the HAP VOCs PRMs at 5 nmol/mol were consistent within a relative expanded uncertainty (k=2) of less than 3 % except acrylonitrile (less than 6 %) and the 18 VOCs were stable for 1 year within their associated uncertainties.

Development of 10 μmol/mol Hydrogen Sulfide Primary Standard Gas for Odor Measurements (악취측정용 10 μmol/mol 황화수소 표준가스 개발)

  • Kim, Yong-Doo;Bae, Hyun-Kil;Kim, Dalho;Oh, Sang-Hyub;Lee, Jin Hong;Lee, Sangil
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Hydrogen sulfide from landfill and sewage treatment plant is a major odor component and causes many civil petitions. Rapidly developing industries release hydrogen sulfide, an odorous gas, to the atmosphere. This study aims to develop a $10{\mu}mol/mol$ concentration level hydrogen sulfide primary standard gas for odor measurement. The hydrogen sulfide gas was prepared at a nominal concentration of $10{\mu}mol/mol$ in nitrogen using the gravimetric method described in ISO 6142. Replicate standard gases were produced in 4 aluminium cylinders, and their concentrations were verified by GC-AED. The uncertainty of production was less than 0.50 %, and the variation of the 4 replicates was 0.22 %. The wall adsorption of hydrogen sulfide in cylinders was 0.10 % at 1500 psi, and the concentration was estimated to be long-term stable for one year. The relative expanded uncertainty of the preparation consistency, adsorption and long-term stability of this hydrogen sulfide standard gas was less than 1.05 % (95 % of confidence level, k=2).

Development of certified reference materials for odorous aldehyde (알데하이드 악취물질의 인증표준물질 개발)

  • Kim, Young-Doo;Woo, Jin-Chun;Bae, Hyun-Kil;Kim, Byoung-Moon;Lee, Byung Gil;Heo, Gwi Suk
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.14-19
    • /
    • 2008
  • Among the many odor materials, aldehyde has bad influences not only on human nose, but also on human health. Aldehyde has a strong odor at infinitesimal level, such as down to ppt concentration. Also aldehydes are highly reactive and have poor stability. Therefore, manufacture of standard gases, analysis of aldehydes are very difficult compare to other air pollution analysis. Aldehyde CRM containing 4 different aldehydes at $10{\mu}mol/mol$ (ppm) is developed by using gravimetry method according to ISO 6142 guide. The standard gases were reproduced again, and examined its reproducibility of preparation by GC-FID. The developed aldehyde CRM's certified value showed a relative expanded uncertainties of 2.11 % (95 % of confidence level, k=2).

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.