DOI QR코드

DOI QR Code

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area

매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화

  • Jeong, Jin Hee (Department of Environmental Engineering, Chungnam National University) ;
  • Kang, Su Ji (Department of Environmental Engineering, Chungnam National University) ;
  • Lim, Jong Myoung (Environmental Radioactivity Assessment Team, Korea Atomic Energy Research Institute) ;
  • Lee, Jin-Hong (Department of Environmental Engineering, Chungnam National University)
  • Received : 2016.04.28
  • Accepted : 2016.08.11
  • Published : 2016.10.31

Abstract

As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

플럭스 챔버법은 비용효율적인 표면 발산량의 측정방법으로 다양한 연구 분야에 널리 이용되어 왔다. 플럭스 챔버법은 운용 방식에 따라 기울기 방식을 이용한 닫힌 챔버법(SFC)과 평형 농도 방식을 이용한 열린 챔버법(DFC)으로 분류할 수 있는데, SFC 방식은 장비가 간단하고 운용이 쉬운 반면, 직선성에 대한 불확실한 가정으로 인하여 플럭스 산정 값이 가변적인 단점이 있다. 한편, DFC 방식은 더 많은 특정 기기가 필요하지만, 어떤 애매모호함이 없이 일정한 값을 산정할 수 있다. 따라서 본 연구는 작고 조밀한 키트를 이용하여 DFC를 자체 제작하였다. 자체 제작한 DFC는 30분 이내에 평형상태에 도달하였고, 측정 초기의 불충분한 혼합을 제외하면 시료 균질도가 5% 미만이고, 회수율이 90% 이상으로 우수하였다. 이 개선된 DFC의 상대확장불확도는 7.37%로 평가되었는데, 이는 주로 통제되지 않은 유입가스에 기인한다. 연구 결과는 대규모 매립지에서 소형의 측정 키트를 이용한, 개선된 DFC 방식이 신뢰성이 높은 자료를 효과적으로 축적할 수 있음을 보여준다.

Keywords

References

  1. Dong, J. I., "Waste eco-energy and GHGs reduction technologies in the era of climate change," J. Korean Soc. Environ Eng, 30(12), 1203-1206(2008).
  2. IPCC, "2006 IPCC guidelines for national greenhouse gas inventories," Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H. S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published: IGES, Japan(2006).
  3. Klenbusch, M. R., "Measurement of gaseous emission rates from land surfaces using an emission-isolation flux chamber: user's guide," No. PB-86-223161/XAB. Radian Corp., Austin, TX(1986).
  4. Morris, S. G., Kimber, S. W. L., Grace, P. and Van Zwieten, L., "Improving the statistical preparation for measuring soil $N_2O$ flux by closed chamber," Sci. Total Environ., 465, 166-172(2013). https://doi.org/10.1016/j.scitotenv.2013.02.032
  5. Parker, D., Ham, J., Woodbury, B., Cai, L., Spiehs, M., Rhoades, M., Trabue, S., Casey, K., Todd, R., and. Cole, A., "Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations," Atmos. Environ., 66, 72-83(2013). https://doi.org/10.1016/j.atmosenv.2012.03.068
  6. Kim, D. S. and Na, U. S, "Soil emission measurements of $N_2O$, $CH_4$ and $CO_2$ from intensively managed upland cabbage field," J. Korean Soc. Atmos. Environ., 27(3), 313-325(2011). https://doi.org/10.5572/KOSAE.2011.27.3.313
  7. Waite, D. T., Cabalo, E., Chau, D. and Sproull, J. F., "A comparison of flux chambers and ambient air sampling to measure ${\gamma}$-hexachlorocyclohexane volatilisation from canola (Brassica napus) fields," Chemosphere, 68(6), 1074-1081(2007). https://doi.org/10.1016/j.chemosphere.2007.01.085
  8. Kim, D. S., "Sensitivity study of the flow - through dynamic flux chamber technique for the soil NO emissions," J. Korean Soc. Atmos. Environ., 21(E3), 75-85(2005).
  9. Leyris, C., Guillot, J. M., Fanlo, J. L. and Pourtier, L., "Comparison and development of dynamic flux chambers to determine odorous compound emission rates from area sources," Chemosphere, 59(3), 415-421(2005). https://doi.org/10.1016/j.chemosphere.2004.10.039
  10. Christensen, S., Ambus, P., Arah, J. R. M., Clayton, H., Galle, B., Griffith, D. W. T., Hargreaves, K. J., Klenzedtsson, L., Lind, A. M., Maag, M., Scott, A., Skiba, U., Smith, K. A., Welling, M. and Wienhold, F. G., "Nitrous oxide emission from an agricultural field: Comparison between measurements by flux chamber and micrometerological techniques," Atmos. Environ., 30(24), 4183-4190(1996). https://doi.org/10.1016/1352-2310(96)00145-8
  11. Kim, K. H. and Lindberg, S. E., "Design and initial tests of a dynamic enclosure chamber for measurements of vaporphase mercury fluxes over soils," Water, Air and Soil Pollut., 80(1), 1059-1068(1995). https://doi.org/10.1007/BF01189766
  12. Cooper, C. D., Reinhart, D., Rash, F., Seligman, D. and Keely, D., "Landfill gas emissions," Florida center for solid and hazardous waste management, US EPA(1992).
  13. Gallego, E., Perales, J. F., Roca, F. J. and Guardino, X., "Surface emission determination of volatile organic compounds (VOC) from a closed industrial waste landfill using a self-designed static flux chamber," Sci. Total Environ., 470-471, 587-599(2014). https://doi.org/10.1016/j.scitotenv.2013.09.105
  14. Spokas, K., Bogner, J., Chanton, J. P., Morcet, M., Aran, C., Graff, C., Moreau-Le Golvan, Y. and Hebe, I., "Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems?," Waste Manage., 26(5), 516-525(2006). https://doi.org/10.1016/j.wasman.2005.07.021
  15. Park, J. W. and Shin, H. C., "Surface emission of landfill gas from solid waste landfill," Atmos. Environ., 35(20), 3445-3451(2001). https://doi.org/10.1016/S1352-2310(01)00118-2
  16. Kim, D. S., Jang, Y. K. and Jeon, E. C., "Surface flux measurements of methane from landfills by closed chamber technique and its validation," J. Korean Soc. Atmos. Environ., 16(5), 499-509(2000).
  17. Mosher, B. W., Czepiel, P. M., Harriss, R. C., Shorter, J. H., Kolb, C. E., McManus, J. B., Allwine, E. and Lamb, B. K. "Methane emissions at nine landfill sites in the northeastern United States," Environ. Sci. Technol., 33(12), 2088-2094(1999). https://doi.org/10.1021/es981044z
  18. Kim, D. S. and Kim, S. Y., "$N_2O$ and $CH_4$ Emission from upland forest soils using chamber methods," J. Korean Soc. Atmos. Environ., 29(6), 789-800(2013). https://doi.org/10.5572/KOSAE.2013.29.6.789
  19. IPCC, "Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change," [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland(2014).
  20. Phillips, N. G., Ackley, R., Crosson, E. R., Down, A., Hutyra, L. R., Brondfield, M., Karr, J. D., Zhao, K. and Jackson, R. B., "Mapping urban pipeline leaks: methane leaks across Boston," Environ. pollut., 173, 1-4(2013). https://doi.org/10.1016/j.envpol.2012.11.003