• Title/Summary/Keyword: 플럭스 챔버

Search Result 25, Processing Time 0.029 seconds

Comparison and Optimization of Flux Chamber Methods of Methane Emissions from Landfill Surface Area (매립지 표면의 메탄 발산량 실측을 위한 플럭스 챔버의 방법론적 비교와 최적화)

  • Jeong, Jin Hee;Kang, Su Ji;Lim, Jong Myoung;Lee, Jin-Hong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.535-542
    • /
    • 2016
  • As one of the most cost-effective methods for surface emission measurements, flux chamber method has been used worldwide. It can be classified into two types: SFC (with slope method) and DFC (with steady-state method). SFC (static flux chamber) type needs only simple equipment and is easy to handle. However, the value of flux might vary with SFC method, because it assumes that the change of concentration in chamber is linear with time. Although more specific equipments are required for DFC (dynamic flux chamber) method, it can lead to a constant result without any ambiguity. We made a self-designed DFC using a small and compact kit, which recorded good sample homogeneity (RSD < 5%) and recovery ( > 90%). Relative expanded measurement uncertainty of this improved DFC method was 7.37%, which mainly came from uncontrolled sweep air. The study shows that the improved DFC method can be used to collect highly reliable emission data from large landfill area.

Two Different Enclosure-based Measurements Applications for Trace Gas Surface Emission and Sensitivity Analysis for Soil NO Emission by Using a Flow-through Dynamic System (지표 미량기체 방출에 대한 두 가지 다른 형태의 Enclosure 기반 측정 방법의 응용 및 Flow-through Dynamic System을 이용한 토양 NO 방출의 민감도 분석)

  • Kim, Deug-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.170-178
    • /
    • 2007
  • Rapid increases in the concentrations of greenhouse gases and many other chemically important trace gases have occurred over the last several centuries. For understanding the roles of these important gases in global change, it is essential to identify their sources and sinks, to characterize biogenic gas fluxes between the biosphere and atmosphere, and to understand the processes that control them. In this paper, enclosure-based measurements are described in a practical manner for field experiments. Theoretical reviews of mass balance equation in the enclosure and sensitivity of the flow-through dynamic flux chamber technique are presented; specifically for the case of NO flux measurements from soil surface. The physical system and theory behind the flow-through dynamic flux chamber method are examined. New calculation flux formula was introduced by considering NO chemical loss on chamber wall and uncertainties of the NO flux calculation were discussed.

Closed Static Chamber Methods for Measurement of Methane Fluxes from a Rice Paddy: A Review (벼논 메탄 플럭스 측정용 폐쇄형 정적 챔버법: 고찰)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.2
    • /
    • pp.79-91
    • /
    • 2020
  • Accurate assessment of greenhouse gas emissions is a cornerstone of every climate change response study, and reliable assessment of greenhouse gas emission data is being used as a practical basis for the entire climate change prediction and modeling studies. Essential, fundamental technologies for estimating greenhouse gas emissions include an on-site monitoring technology, an evaluation methodology of uncertainty in emission factors, and a verification technology for reductions. The closed chamber method is being commonly used to measure gas fluxes between soil-vegetation and atmosphere. This method has the advantages of being simple, easily available and economical. This study presented the technical bases of the closed chamber method for measuring methane fluxes from a rice paddy. The methane fluxes from rice paddies occupy the largest portion of a single source of greenhouse gas in the agricultural field. We reviewed the international and the domestic studies on automated chamber monitoring systems that have been developed from manually operated chambers. Based on this review, we discussed scientific concerns on chamber methods with a particular focus on quality control for improving measurement reliability of field data.

Measurement of Soil CO2 Efflux Using a Closed Dynamic Chamber System (폐회로 역학 챔버 시스템을 이용한 토양 이산화탄소 플럭스 관측)

  • Chae, Nam-yi;Kim, Joon;Kim, Dong-gill;Lee, Do-won;Kim, Rae-Hyun;Ban, Ji-yeon;Son, Yo-whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.2
    • /
    • pp.94-100
    • /
    • 2003
  • Soil $CO_2$ emission is one of the primary components in carbon balance of terrestrial ecosystems. To accurately assess their net ecosystem exchange of $CO_2$ and net primary production, measurement of soil $CO_2$ efflux is required along with that of canopy $CO_2$ flux. In this paper, soil $CO_2$ flux measurement technique using closed dynamic chamber systems is briefly reviewed. Preliminary results on soil $CO_2$ exchange and inter-comparison of different measurement systems currently used in Korean regional network of tower flux measurement sites (KoFlux) are also reported.

Floating electrode를 갖는 플라즈마 시스템의 수치 모델링

  • Ju, Jeong-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.129-129
    • /
    • 2015
  • Dry etcher, PECVD등의 플라즈마 공정 장비의 구조물에는 유전체로 절연된 금속판들이 사용된다. 플라즈마 이론을 보면 이들 표면의 전위는 양전하 플럭스와 음전하 플럭스가 같아서 순전류가 0이 되는 부유 전위를 갖는다. 금속과 같은 전도체의 표면은 모두 같은 전위를 가져야 한다. 일반적인 플라즈마 시뮬레이션 소프트웨어에는 이런 경계 조건이 선택 가능하지 않다. ESI사의 CFD-ACE+의 사용자 루틴 개발 기능을 이용하여 Fortran90문법으로 경계면 최인접 셀의 중심에서 구한 전자 온도와 경계면의 이온 입사 플럭스로 가중평균을 구한 이온 질량을 맥스웰분포를 가정한 부유 전위식에 대입하여 시뮬레이션을 CCP에서 구현하였다. 원형 챔버의 가장자리에 떠 있는 사각 링 전극을 가정하고 이 전극 표면이 접지 전위일때, 유전체 일때, 본 연구에서 개발한 루틴을 적용한 결과를 Ar CCP에 대해서 비교 분석하였다.

  • PDF

Comparison of CH4 Emission by Open-path and Closed Chamber Methods in the Paddy Rice Fields (벼논에서 open-path와 closed chamber 방법 간 메탄 배출량 비교)

  • Jeong, Hyun-cheol;Choi, Eun-jung;Kim, Gun-yeob;Lee, Sun-il;Lee, Jong-sik
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.507-516
    • /
    • 2018
  • The closed chamber method, which is one of the most commonly used method for measuring greenhouse gases produced in rice paddy fields, has limitations in measuring dynamic $CH_4$ flux with spatio-temporal constrains. In order to deal with the limitation of the closed chamber method, some studies based on open-path of eddy covariance method have been actively conducted recently. The aim of this study was to compare the $CH_4$ fluxes measured by open-path and closed chamber method in the paddy rice fields. The open-path, one of the gas ($CO_2$, $CH_4$ etc.) analysis methods, is technology where a laser beam is emitted from the source passes through the open cell, reflecting multiple times from the two mirrors, and then detecting. The $CH_4$ emission patterns by these two methods during rice cultivation season were similar, but the total $CH_4$ emission measured by open-path method were 31% less than of the amount measured by closed chamber. The reason for the difference in $CH_4$ emission was due to overestimation by closed chamber and underestimation by open-path. The closed chamber method can overestimate $CH_4$ emissions due to environmental changes caused by high temperature and light interruption by acrylic partition in chamber. On the other hand, the open-path method for eddy covariance can underestimate its emission because it assumes density fluctuations and horizontal homogeneous terrain negligible However, comparing $CH_4$ fluxes at the same sampling time (AM 10:30-11:00, 30-min fluxes) showed good agreements ($r^2=0.9064$). The open-path measurement technique is expected to be a good way to compensate for the disadvantage of the closed chamber method because it can monitor dynamic $CH_4$ fluctuation even if data loss is taken into account.

Comparison of Material Flux at the Sediment-Water Interface in Marine Finfish and Abalone Cage Farms, Southern Coast of Korea: In-situ and Laboratory Incubation Examination (남해안 어류 및 전복가두리양식장의 퇴적물-수층 경계면에서의 물질플럭스 비교: 현장배양과 실내배양실험 연구)

  • Park, Jung-Hyun;Cho, Yoon-Sik;Lee, Won-Chan;Hong, Sok-Jin;Kim, Hyung-Chul;Kim, Jeong-Bae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.536-544
    • /
    • 2012
  • It is necessary to study the material circulation of coastal ecosystem according to aquacultural activity in order to induce the sustainable production of aquaculture and the fishery environment for the useful use. Hence, it is essential to make an exact assessment for the sedimentation release flux at the sediment-water interface in the aquafarm. Sediment oxygen demand and dissolved inorganic nitrogen release fluxes were compared using in-situ and laboratory incubational examination. Sediment oxygen demands were 116, 34, and $31\;mmol\;O_2\;m^{-2}\;d^{-1}$ (in-situ incubation), 52, 17, and $15\;mmol\;O_2\;m^{-2}\;d^{-1}$ (Core incubation) and dissolved inorganic nitrogen release fluxes were 7.18, 7.98, and $1.78\;mmol\;m^{-2}\;d^{-1}$ (in-situ incubation), 3.33, 3.74, and $1.96\;mmol\;m^{-2}\;d^{-1}$ (Core incubation) at Tongyeong finfish, Yeosu finfish, and Wando abalone cage farms, respectively. Consequently, in-situ incubation results showed two times higher than laboratory examination. We compared the material flux at the sediment-water interface of each farm and the characteristics between two different kinds of material flux examination.

Evaluation of CH4 Flux for Continuous Observation from Intertidal Flat Sediments in the Eoeun-ri, Taean-gun on the Mid-western Coast of Korea (서해안 태안 어은리 갯벌의 연속관측 메탄(CH4) 플럭스 특성 평가)

  • Lee, Jun-Ho;Rho, Kyoung Chan;Woo, Han Jun;Kang, Jeongwon;Jeong, Kap-Sik;Jang, Seok
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.147-160
    • /
    • 2015
  • In 2014, on 31 August and 1 September, the emissions of $CH_4$, $CO_2$, and $O_2$ gases were measured six times using the closed chamber method from exposed tidal flat sediments in the same position relative to the low point of the tidal cycle in the Eoeun-ri, Taean-gun, on the Mid-western Coast of Korea. The concentrations of $CH_4$ in the air sample collected in the chamber were measured using gas chromatography with an EG analyzer, model GS-23, within 6 hours of collection, and the other gases were measured in real time using a multi-gas monitor. The gas emission fluxes (source (+), and sink (-)) were calculated from a simple linear regression analysis of the changes in the concentrations over time. In order to see the surrounding parameters (water content, temperature, total organic carbon, average mean size of sediments, and the temperature of the inner chamber) were measured at the study site. On the first day, across three measurements during 5 hours 20 minutes, the observed $CO_2$ flux absorption was -137.00 to $-81.73mg/m^2/hr$, and the $O_2$ absorption, measured simultaneously, was -0.03 to $0.00mg/m^2/hr$. On the second day using an identical number of measurements, the $CO_2$ absorption was -20.43 to $-2.11mg/m^2/hr$, and the $O_2$ absorption -0.18 to $-0.14mg/m^2/hr$. The $CH_4$ absorption before low tide was $-0.02mg/m^2/hr$ (first day, Pearson correlation coefficient using the SPSS statistical analysis is -0.555(n=5, p=0.332, pronounced negative linear relationship)), and $-0.15mg/m^2/hr$ (second day, -0.915(n=5, p=0.030, strong negative linear relationship)) on both measurement days. The emitted flux after low tide on both measurement days reached a minimum of $+0.00mg/m^2/hr$ (+0.713(n=5, p=0.176, linear relationship which can be almost ignored)), and a maximum of $+0.03mg/m^2/hr$ (+0.194(n=5, p=0.754, weak positive linear relationship)) after low tide. However, the absolute values of the $CH_4$ fluxes were analyzed at different times. These results suggest that rate for $CH_4$ fluxes, even the same time and area, were influenced by changes in the tidal cycle characteristics of surface sediments for understanding their correlation with these gas emissions, and surrounding parameters such as physiochemical sediments conditions.

Spray Characteristics According to the Variation of Design Parameters and Gas-liquid Momentum-flux Ratio in a Swirl-coaxial Injector Applied to Small Rocket Engine (소형로켓엔진에 적용된 스월 동축형 인젝터의 형상변수와 기체-액체 운동량 플럭스 비에 따른 분무특성)

  • Hyun Jong Ahn;Yun Hyeong Kang;Jeong Soo Kim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.27 no.1
    • /
    • pp.27-36
    • /
    • 2023
  • To understand the atomization performance in gas-liquid swirl-coaxial injector applied to a small rocket engine, a cold-flow test was performed by varying the design parameters and supply condition of propellants. As the swirl-chamber diameter and the angle of the convergent section, which are design parameters of injector increased, the spray performance of the injector improved by increasing the swirl strength. In addition, as the gas-liquid momentum-flux ratio increased, the gas flow separated some of the droplets from the liquid film, and a gas-droplet mixture core was formed in the center of the spray sheet.

Assessment of CH4 oxidation in macroinvertebrate burrows of tidal flats (갯벌의 무척추 동물 서식굴 내 메탄산화 평가)

  • Kang, J.;Kwon, K.;Woo, H.J.;Choi, J.U.
    • Journal of Wetlands Research
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • In tidal flats that lack plants, methane ($CH_4$) fluxes are both positive (gas emission) and negative (gas "sinking") in nature. The levels of methanotroph populations significantly affect the extent of $CH_4$ sinking. This preliminary study examined $CH_4$ flux in tidal flats using a circular closed-chamber method to understand the effects of macroinvertebrate burrowing activity. The chamber was deployed over decapods (mud shrimp, Laomedia astacina and crab, Macrophthalmus japonicus) burrows for ~ 2 h, and the $CH_4$ and $CO_2$ concentrations were continuously monitored using a closed, diffuse $CH_4/CO_2$ flux meter. We found that Laomedia astacina burrow (which is relatively long) site afforded higher-level $CH_4$ production, likely due to diffusive emission of $CH_4$ in deep-layer sediments. In addition, the large methanotrophic bacteria population found in the burrow wall sediments has $CH_4$ oxidation (consumption) potential. Especially, nitrite-driven anaerobic oxidation of methane (AOM) may occur within burrows. The proposed $CH_4$-oxidation process was supported by the decrease in the ${\delta}^{13}C$ of headspace $CO_2$ during the chamber experiment. Therefore, macroinvertebrate burrows appear to be an important ecosystem environment for controlling atmospheric $CH_4$ over tidal flats.