• Title/Summary/Keyword: Expanded polytetrafluoroethylene (e-PTFE)

Search Result 16, Processing Time 0.025 seconds

Guided bone regeneration using two types of non-resorbable barrier membranes (두 가지 유형의 비흡수성 차단막을 이용한 골유도재생술의 비교연구)

  • Lee, Ji-Young;Kim, Young-Kyun;Yun, Pil-Young;Oh, Ji-Su;Kim, Su-Gwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.275-279
    • /
    • 2010
  • Introduction: Guided bone regeneration (GBR) is a common procedure for the treatment of bone defects and bone augmentation. The nonresorbable barriers are well-documented barriers for GBR because of their stability and malleability. However, few GBR studies have focused on the different types of non-resorbable barriers. Therefore, this study examined the clinical results of different non-resorbable barriers for GBR; expanded polytetrafluoroethylene (e-PTFE) (TR-Gore Tex, Flagstaff, AZ, USA), and high-density polytetrafluoroethylene (d-PTFE) (Cytoplast membrane, Oraltronics, Bremen, Germany). Materials and Methods: The analysis was performed on patients treated with GBR and implant placement from January 2007 to October 2007 in the department of the Seoul National University Bundang Hospital. The patients were divided into two groups based on the type of non-resorbable barrier used, and the amount of bone regeneration, marginal bone resorption after prosthetics, implant survival rate and surgical complication in both groups were evaluated. Results: The implants in both groups showed high survival rates, and the implant-supported prostheses functioned stably during the follow-up period. During the second surgery of the implant, all horizontal defects were filled with new bone, and there was no significant difference in the amount of vertical bone defect. Conclusion: In bone defect areas, GBR with non-resorbable barriers can produce favorable results with adequate postoperative management. There was no significant difference in bone regeneration between e-PTFE and d-PTFE.

The Effect of e-PTFE Membrane Exposure on the Initial Healing of Periodontal Tissue in GTR Procedure (e-PTFE 차단막을 이용한 조직유도재생술시 e-PTFE 차단막의 노출이 치주조직의 초기치유에 미치는 영향)

  • Moon, Ik-Sang;Kim, Ji-Eun;Song, Kun-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.3
    • /
    • pp.553-560
    • /
    • 1999
  • The aim of the present study was to evaluate the effect of the expanded polytetrafluoroethylene (e-PTFE) membrane exposure on the initial healing of the periodontal tissue in guided tissue regeneration (GTR) procedure. 90 sites selected from 90 patients were treated with gingival flap surgery supported by an e-PTFE membrane. The material included angular bony defects with probing attachment loss of > 5mm or degree II furcation involvement. Treated sites were classified with membrane exposure group and non-exposure group at membrane removal and evaluated healing type. The results were obtained as follows. 1. e-PTFE membrane was exposed at 61 sites (67.8%) among 90 sites. 2. Thirteen sites (14.4%) depicted rapid healing type, 65 sites (72.2%) depicted typical healing type, 9 sites (10%) showed delayed healing type and 3 sites (3.3%) were categorized as adversed healing type. 3. In e-PTFE membrane exposure group, 1 site (1.6%), 51 sites (83.6%), 6 sites (9.8%) and 3 sites (4.9%) showed rapid healing type, typical healing type, delayed healing type and adverse healing type respectively. 4. In e-PTFE membrane non-exposure group, 12 sites (41.3%), 14 sites (48.3%) and 3 sites (10.3%) showed rapid healing type, typical healing type and delayed healing type respectively. Adverse healing type was not observed. 5. The rate of favourable healing between e-PTFE membrane exposure group and non-exposure group was not statistically significant(p=0.56). These results suggest that the prevention of membrane exposure may be important to obtain rapid healing type. However favourable healing could be obtained with stringent infection control program even if membrane was exposed.

  • PDF

Paclitaxel Coating Inhibits Inflammation Surrounding Subcutaneously Implanted Expanded Polytetrafluoroethylene (ePTFE) Hemodialysis Grafts in Rabbit Model

  • Baek, In-Su;Lee, Yu-Ji;Park, Soo-Jin;Bai, Cheng Zhe;Park, Jong-Sang;Kim, Dae-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.281-285
    • /
    • 2010
  • Hemodialysis vascular access dysfunction (HVAD) due to the aggressive development of venous neointimal hyperplasia remains a major complication for patients with synthetic arteriovenous grafts. Paclitaxel-coated expanded polytetrafluoroethylene (ePTFE) grafts effectively prevent neointimal hyperplasia and stenosis. However, perigraft inflammation or edema can be another complication of ePTFE grafts, preventing early cannulation. Three different types of ePTFE grafts, including grafts without paclitaxel coating (control group, n = 12), grafts with paclitaxel coating at a dose density of $0.61ug/mm^2$ (low concentration group, n = 12), and grafts with paclitaxel coating at a dose density of $1.15ug/mm^2$ (high concentration group, n = 12) were placed in the backs of 12 rabbits, simultaneously. Six rabbits were euthanized after one week and the remaining six were euthanized two weeks after implantation. Perigraft inflammation, graft wall inflammation, stromal cell proliferation, blood vessel formation, tissue necrosis and edema were analyzed for the grafts in each animal. Inflammation surrounding the paclitaxel-coated grafts was significantly reduced compared to the control group. Stromal cell layers were detected at the interface between the graft and the surrounding tissue in the control group, infiltrated into the graft interstices, and differentiated into myofibroblasts for graft healing. Paclitaxel-coated grafts inhibited stromal cell proliferation and infiltration into the graft wall. Tissue necrosis and edema were not detected in either of the paclitaxel-coated graft groups.

New Coating Method for Sustained Drug Release: Surface Modification of ePTFE Grafts by inner coating PLGA

  • Kim, Hyeseon;Park, Seohyeon;Kim, Dae Joong;Park, Jong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1333-1336
    • /
    • 2014
  • Expanded polytetrafluoroethylene (ePTFE) grafts have been used as vascular access for many patients suffering from end stage renal disease. However, the vascular graft can cause significant clinical problems such as stenosis or thrombosis. For this reason, many studies have been performed to make drug eluting graft, but initial burst is major problem in almost drug eluting systems. Therefore we used biodegradable polymer to reduce initial burst and make sustained drug delivery. The ePTFE grafts were dipped into a paclitaxel-dissolved solution and then PLGA-dissolved solution was passed through the lumen of ePTFE. We analyzed whether the dose of paclitaxel is enough and the loading amount of PLGA on ePTFE graft increases according to the coating solution's concentration. Scanning electron microscope (SEM) images of various concentration of PLGA showed that the porous surface of graft was more packed with PLGA by tetrahydrofuran solution dissolved PLGA. In addition, in vitro release profiles of Ptx-PLGA graft demonstrated that early burst was gradually decreased as increasing the concentration of PLGA. These results suggest that PLGA coating of Ptx loaded graft can retard drug release, it is useful tool to control drug release of medical devices.

Gamma irradiation-induced grafting of 2-hydroxyethyl methacrylate (HEMA) onto ePTFE for implant applications

  • Mohd Hidzir, Norsyahidah;Radzali, Nur Ain Mohd;Rahman, Irman Abdul;Shamsudin, Siti Aisyah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2320-2327
    • /
    • 2020
  • The extreme hydrophobicity of expanded polytetrafluoroethylene (ePTFE) hinders bone-tissue integration, thus limiting the use of ePTFE in medical implant applications. To improve the potential of ePTFE as a biomaterial, 2-hydroxyethyl methacrylate (HEMA) was grafted onto the ePTFE surface using the gamma irradiation technique. The characteristics of the grafted ePTFE were successfully evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR), field-emission scanning electron microscopy (FESEM)/energy dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). Under the tensile test, the modified ePTFE was found to be more brittle and rigid than the untreated sample. In addition, the grafted ePTFE was less hydrophobic with a higher percentage of water uptake compared to the untreated ePTFE. The protein adsorption test showed that grafted ePTFE could adsorb protein, which was denoted by the presence of N peaks in the XPS analysis. Moreover, the formation of the globular mineral on the grafted ePTFE surface was successfully visualized using the FESEM analysis, with a ratio of 1.94 for Ca:P minerals by the EDX. To summarize, the capability of the modified ePTFE to show protein adsorption and mineralization indicates the improvement of the polymer properties, and it can potentially be used as a biomaterial for implant application.

Designing an Outdoor Linear LED Luminaire with Gore-Tex Filters

  • Woo-young Kim;Seong-Kweon Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.93-102
    • /
    • 2024
  • We introduce a novel outdoor linear LED luminaire enhanced with Gore-Tex filters, designed to overcome the challenges of moisture and thermal management in harsh environments. This luminaire integrates expanded polytetrafluoroethylene (ePTFE)-commercially known as Gore-Tex-achieving superior waterproofing and dustproof qualities while maintaining breathability to prevent internal condensation. The design process, from conceptualization through prototyping and testing, is detailed, highlighting the luminaire's improved durability and stability under varying conditions. Experimental results demonstrate that our design significantly extends the operational lifespan and reliability of outdoor LED lighting systems by mitigating thermal and moisture-related degradation. This study not only advances ePTFE's application in lighting technologies but also offers a scalable model for enhancing the performance of LED luminaires in outdoor settings.

The Comparative Study On Scanning Electron Microscopic Findings Of Retrived ePTFE Membrane With Clinical Conditions (제거된 ePTFE 막의 주사전자현미경적 소견과 치주임상상태의 비교연구)

  • Park, Jeong-Min;Choi, Byung-Son;Lee, Seok-Cho;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.133-142
    • /
    • 1996
  • Ten intrabony defects in 10 patients were treated by flap surgery including root surface debridement and placement of an expanded polytetrafluoroethylene(ePTFE) membrane. The membranes were removed after 4-6 weeks. This study was performed to examine the retrived ePTFE membrane by scanning electron microscopy(SEM) for bacterial contamination and adherent connective tissue elements, and to compare it with clinical conditions. The cervical portion of the membrane, which in most cases had become partially exposed to the oral cavity, had a bacterial deposit. Small bacterial colonies and a scatter of single cells in some instances extended into the apical portion of the membrane. Fibroblast-like cells, erythrocytes and fibrous structures were seen in the apical portion of the membrane. Outer surface of membrane tends to more bacterial contamination than inner surface(p<0.01), and upper portions more than lower portions(P<0.01). Comparison of ultrastructural findings and clinical conditions revealed that extent of bacterial contamination of the membrane correlated with gingival inflammation and extent of membrane exposure, but it was not significant statistically. The results suggested that gingival inflammation and membrane exposure affect periodontal regeneration by the use of ePTFE membrane.

  • PDF

Comparison of Hemodynamic Energy between Expanded Polytetrafluoroethylene and Dacron Artificial Vessels

  • Lim, Jaekwan;Won, Jong Yun;Ahn, Chi Bum;Kim, Jieon;Kim, Hee Jung;Jung, Jae Seung
    • Journal of Chest Surgery
    • /
    • v.54 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • Background: Artificial grafts such as polyethylene terephthalate (Dacron) and expanded polytetrafluoroethylene (ePTFE) are used for various cardiovascular surgical procedures. The compliance properties of prosthetic grafts could affect hemodynamic energy, which can be measured using the energy-equivalent pressure (EEP) and surplus hemodynamic energy (SHE). We investigated changes in the hemodynamic energy of prosthetic grafts. Methods: In a simulation test, the changes in EEP for these grafts were estimated using COMSOL MULTIPHYSICS. The Young modulus, Poisson ratio, and density were used to analyze the grafts' material properties, and pre- and post-graft EEP values were obtained by computing the product of the pressure and velocity. In an in vivo study, Dacron and ePTFE grafts were anastomosed in an end-to-side fashion on the descending thoracic aorta of swine. The pulsatile pump flow was fixed at 2 L/min. Real-time flow and pressure were measured at the distal part of each graft, while clamping the other graft and the descending thoracic aorta. EEP and SHE were calculated and compared. Results: In the simulation test, the mean arterial pressure decreased by 39% for all simulations. EEP decreased by 42% for both grafts, and by around 55% for the native blood vessels after grafting. The in vivo test showed no significant difference between both grafts in terms of EEP and SHE. Conclusion: The post-graft hemodynamic energy was not different between the Dacron and ePTFE grafts. Artificial grafts are less compliant than native blood vessels; however, they can deliver pulsatile blood flow and hemodynamic energy without any significant energy loss.

Effect of inorganic polyphosphate on guided bone regeneration (무기인산염이 골유도재생에 미치는 영향)

  • Chung, Jong-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.491-510
    • /
    • 2005
  • This study was performed to evaluate the effect of inorganic polyphosphate on bone formation in the calvaria of rabbit in the procedure of guided bone regeneration with bovine cancellous bone graft and titanium reinforced expanded polytetrafluoroethylene(TR-ePTFE) membrane. The rabbits were divided into four groups. Control group I used only TR-ePTFE membrane, control group II used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in saline, experimental group III and IV used TR-ePTFE membrane and deproteinized bovine bone mineral soaked in 1% or 2% inorganic polyphosphate respectively. After decortication in the calvaria, GBR procedure was performed on 12 rabbits with titanium reinforced ePTFE membrane filled with deproteinized bovine bone mineral soaked in saline or inorganic polyphosphate. The animals were sacrificed at 2 weeks, 4 weeks, and 8 weeks after the surgery. Decalcified and non-decalcified specimens were processed for histologic and immunohistochemistric analysis. 1. Titanium reinforced ePTFE(TR-ePTFE) membrane showed good spacemaking and cell occlusiveness capability, but it showed poor wound stabilization. 2. The deproteinized bovine bone mineral did not promote bone regeneration, but it acted as a space filler. 3. There was no complete resorption of the deproteinized bovine bone mineral within 8 weeks. 4. 1% inorganic polyphosphate did not promote bone formation, but 2% inorganic polyphosphate promoted bone formation. Within the above results, 2% inorganic polyphosphate could be used effectively for bone regeneration.

Surgical Correction of Left Ventricular Assist Device Outflow Graft Obstruction Caused by a Wrapped Expanded Polytetrafluoroethylene Graft: A Case Report

  • Sung Min Kim;Ilkun Park;Siwon Oh;Hyo Won Seo;Ga Hee Jeong;Jun Ho Lee;Su Ryeun Chung;Kiick Sung;Wook Sung Kim;Yang Hyun Cho
    • Journal of Chest Surgery
    • /
    • v.57 no.4
    • /
    • pp.413-417
    • /
    • 2024
  • A 70-year-old man with dilated cardiomyopathy underwent left ventricular assist device (LVAD) implantation, using a HeartWare ventricular assist device, as a bridge to candidacy. After 26 months, computed tomography (CT) angiography indicated stenosis in the LVAD outflow graft; however, the patient was asymptomatic, prompting a decision to manage his condition with close monitoring. Ten months later, the patient presented with dizziness and low-flow alerts. Subsequent CT angiography revealed a critical obstruction involving the entire LVAD outflow graft. The patient underwent emergency surgery, during which an organized seroma causing the graft obstruction was found between a wrapped expanded polytetrafluoroethylene (ePTFE) graft and a Dacron outflow graft. The covering of the outflow graft was removed, along with the organized seroma. Following removal of the ePTFE wrap and decompression of the outflow graft, normal LVAD flow was reestablished. The practice of wrapping the outflow graft with synthetic material, commonly done to facilitate later redo sternotomy, may pose a risk for outflow graft obstruction.