Objectives : Osteoporosis is a systemic skeletal disorder characterized by reduced bone mineral density and increased risk of fractures. Bisphosphonates and selective estrogen receptors, which are bone resorption inhibitors that are currently widely used as osteoporosis treatments, show serious side effects when administered for a long time. Research on bone resorption inhibitors that complement the problems of existing treatments is needed. The purpose of this study was to investigate the effect of inhibiting osteoclast differentiation and activity on the tuberous root of Ampelopsis japonica (Thunb.) Makino (AM). Methods : After extracting AM using distilled water and ethanol, the inhibitory effects of the two solvents on osteoclast differentiation were compared using the RANKL-induced in vitro experimental model and the TRAP assay kit. The impact of AM on bone resorption was investigated through the pit formation assay, and its effect on F-actin formation was assessed through fluorescent staining. Additionally, protein and mRNA expression levels of osteoclast differentiation markers (NFATc1, c-Fos, TRAP and ATP6v0d2) and resorption markers (MMP-9, CTK, and CA2) were analyzed via western blot and RT-PCR. Results : AM treatment significantly decreased the number of TRAP-positive cells and pit formation area. Furthermore, AM suppressed both the protein and mRNA expression of NFATc1 and c-Fos, key transcription factors involved in osteoclast differentiation and it downregulated the expression of osteoclast-associated genes such as TRAP, CTK, MMP-9, CA2, and ATP6v0d2. Conclusions : These results suggest that AM can inhibit bone resorption and osteoclast differentiation, indicating its potential for use in the treatment and prevention of osteoporosis.
Journal of the Korea Society of Computer and Information
/
v.28
no.9
/
pp.177-188
/
2023
The purpose of this study is to develop and validate a scale for measuring digital literacy by identifying the factors consisting of digital literacy and extracting items for each factor. Preliminary items for the Delphi study were developed through the analysis of previous literature and the deliberation of the research team. As a result of two rounds of the expert Delphi study, 65 items were selected for the main survey. The validation of the items was carried out in the process of exploratory and confirmatory factor analyses, reliability test, and criterion validity test using the data collected in the main survey. As a result, a 4-factor structure composed of 31 questions(factor 1: digital technology & data literacy- 9 questions, factor 2: digital content & media literacy- 8 questions, factor 3: digital communication & community literacy- 9 questions, factor 4: digital wellness literacy - 5 questions) was confirmed. Also, the goodness of fit indices of the model were found to be good and the result of reliability test revealed the scale had a very appropriate level of Cronbach's alpha(α=.956). In addition, a statistically significantly positive correlations(p<.001) were found between digital literacy and internet self-efficacy and between digital literacy and self-directed learning ability, which were predicted in the existing evidence, therefore the criterion validity of the developed scale was secured. Finally, practical and academic implications of the study are provided and future study and limitations of the study are discussed.
International conference on construction engineering and project management
/
2022.06a
/
pp.1253-1253
/
2022
Although the construction industry is changing from a 2D-based to a 3D BIM-based management process, 2D drawings are still used as standards for permits and construction. For this reason, 2D deliverables extracted from 3D BIM are one of the essential achievements of BIM projects. However, due to technical and institutional problems that exist in practice, the process of extracting 2D deliverables from BIM requires additional work beyond generating 3D BIM models. In addition, the consistency of data between 3D BIM models and 2D deliverables is low, which is a major factor hindering work productivity in practice. To solve this problem, it is necessary to build BIM data that meets information requirements (IRs) for extracting 2D deliverables to minimize the amount of work of users and maximize the utilization of BIM data. However, despite this, the additional work that occurs in the BIM process for drawing creation is still a burden on BIM users. To solve this problem, the purpose of this study is to increase the productivity of the BIM process by automating the process of extracting 2D deliverables from BIM and securing data consistency between the BIM model and 2D deliverables. For this, an expert interview was conducted, and the requirements for automation of the process of extracting 2D deliverables from BIM were analyzed. Based on the requirements, the types of drawings and drawing expression elements that require automation of drawing generation in the design development stage were derived. Finally, the method for developing automation technology targeting elements that require automation was classified and analyzed, and the process for automatically extracting BIM-based 2D deliverables through templates and rule-based automation modules were derived. At this time, the automation module was developed as an add-on to Revit software, a representative BIM authoring tool, and 120 rule-based automation rulesets, and the combinations of these rulesets were used to automatically generate 2D deliverables from BIM. Through this, it was possible to automatically create about 80% of drawing expression elements, and it was possible to simplify the user's work process compared to the existing work. Through the automation process proposed in this study, it is expected that the productivity of extracting 2D deliverables from BIM will increase, thereby increasing the practical value of BIM utilization.
The Ministry of Land, Infrastructure and Transport has also been promoting the commercialization of land transport technology to commercialize the technologies owned by small and medium-sized venture companies, and to support the transfer and commercialization of public technologies. At this point, in order to improve the investment effect of subsequent new projects and to select excellent research institutes, it is necessary to establish a valid evaluation index system suitable for the purpose of the project. The evaluation index system for subsequent new projects should be linked to the project objectives and goals of the preceding project, and should be selected in consideration of existing evaluation indicators to prevent interruption of research results. Therefore, this thesis sets the evaluation index system into multiple scenarios through hierarchical cluster analysis using the evaluation result data for each evaluation committee for small and medium venture companies participating in the land transportation technology commercialization support project, and then analyzes the structural equation model. As a result of scenario analysis, considering the measurement effect of each path representing the causal relationship between evaluation indicators and the effect of each evaluation index on evaluation items, the scenario with the highest impact on the evaluation result was selected as an improvement plan.
The water and sewage system is an infrastructure that provides safe and clean water to people. In particular, since the water and sewage pipelines are buried underground, it is very difficult to detect system defects. For this reason, the diagnosis of pipelines is limited to post-defect detection, such as system diagnosis based on the images taken after taking pictures and videos with cameras and drones inside the pipelines. Therefore, real-time detection technology of pipelines is required. Recently, pipeline diagnosis technology using advanced equipment and artificial intelligence techniques is being developed, but AI-based defect detection technology requires a variety of learning data because the types and numbers of defect data affect the detection performance. Therefore, in this study, various defect scenarios are implemented using 3D printing model to improve the detection performance when detecting defects in pipelines. Afterwards, the collected images are performed to pre-processing such as classification according to the degree of risk and labeling of objects, and real-time defect detection is performed. The proposed technique can provide real-time feedback in the pipeline defect detection process, and it would be minimizing the possibility of missing diagnoses and improve the existing water and sewerage pipe diagnosis processing capability.
Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
The Journal of the Convergence on Culture Technology
/
v.9
no.1
/
pp.685-690
/
2023
It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.
Journal of The Korean Society of Agricultural Engineers
/
v.65
no.2
/
pp.21-33
/
2023
While the main purpose of irrigation reservoirs is to supply agricultural water, the needs of environmental flow and flood control has been expanded. The agricultural reservoirs have been operated in the form of carry-over system until now. Therefore, the supply of agricultural water is difficult when the storage rate is not sufficiently secured after large volume of irrigation. In addition, there are regulation of the upper storage rate for some large reservoirs during the flood season, but lower storage rate is not regulated. Accordingly, this study aims to evaluate the capacity of agricultural water and environmental flow supply by setting the management lower storage rate of reservoir. The changes in the supply of agricultural and environmental flow was simulated according to the three different regulating lower storage rate scenarios. As a result, it was judged effective in terms of water supply managing the lower storage rate up to 30% when the initial storage rate of farming period is above annual average for the Naju reservoir considering existing water management practice. If the lower storage rate would have been controlled above 30%, the supply of agricultural water might be increased and non-effective discharge amount would be decreased compared to other scenarios during dry period of 2016-2018.
Purpose - This paper empirically investigates the effect of a rise in the global value chain (GVC) on the industry-level efficiency of resource allocation (based on plant-level inefficiency measures) in Korea, with a focus on various channels through which a rise in the GVC can increase competition among firms and thus induce resources to be allocated more efficiently across firms. Design/methodology - We empirically investigate the relationship between the industry-specific importance of GVC and the industry-level allocative inefficiency that is measured as the dispersion of the plant-level marginal revenue of capital (MRK) as in Hsieh and Klenow's (2009) influential model. We compute MRK dispersion for industries sorted by various characteristics that are closely related to firm/industry sensitivity to the GVC. In other words, we compute the average industry-level MRK dispersion for industries sorted by industry-specific importance of GVC and compute the difference between the two groups of industries (higher vs. lower than the median GVC); we also calculate the difference between industries sorted by industry-specific export (import) intensity. This is our difference-in-difference estimate of the MRK dispersion associated with the GVC for the export (import)-intensive industry versus the non-export (non-import)-intensive industry. This difference-in-difference estimate of the MRK dispersion conditional vs. unconditional on firm-level productivity is then calculated further (triple-difference estimate). Findings - A rise in GVC is associated with a decrease in the MRK dispersion in the export-intensive industry compared to the non-export-intensive industry. The same is true for industries that rely heavily on imports versus those that do not (i.e., import intensive vs. non-intensive). Furthermore, the reduction in the MRK dispersion in the export-intensive industry associated with an increase in the GVC is disproportionately greater for high-productivity firms. In contrast, the negative relationship between GVC and MRK dispersion in the import-intensive industry is disproportionately smaller for high-productivity firms. Originality/value - Existing studies focus on the relationship between GVC and aggregate output, exports, and imports at the country level. We investigate detailed firm/industry-level mechanisms that determine the relationship between GVC, trade, and productivity. Using the plant-level data in South Korea, we investigate how GVC is related to the cross-firm MRK dispersion, an important measure of allocative inefficiency, based on Hsieh and Klenow's (2009) influential economic theory. This is the first study to provide plant-level evidence of how GVC affects MRK dispersion. Furthermore, we examine how the relationship between GVC and MRK-dispersion varies across export intensity, import intensity, and firm-level productivity, providing insight into how GVC can affect firms' exposure to competition in the global market differently depending on market conditions and thus generate trade-related productivity gains.
Laboratory model test with soft silty ground (ML) and polluted silty ground with wastewater and factory waste oil ($ML_p$) was conducted and the applicability of changes of bearing capacity from the increase of pollutants was compared and analyzed with existing findings. As silty ground polluted with wastewater and factory waste oil had increased contents of pollutants, plasticization of ground was fostered compared to soft silt ground due to the influence of pollutants, and characteristics of ground strength decreased. Critical surcharge value of soft silty ground $q_{cr}=4.14c_u$, ultimate bearing capacity value $q_{ult}=9.53c_u$, critical surcharge value of silty ground polluted with wastewater and factory waste oil $q_{cr}=1.78c_u$ and ultimate bearing capacity value $q_{ult}=4.39c_u$. Critical surcharge and ultimate bearing capacity of silty ground polluted with wastewater and factory waste oil were less than those of soft silty ground. It meant that shearing resistance due to the increase of pollutants decreased and rather a smaller value was obtained.
The ground roll is the most common coherent noise in land seismic data and has an amplitude much larger than the reflection event we usually want to obtain. Therefore, ground roll suppression is a crucial step in seismic data processing. Several techniques, such as f-k filtering and curvelet transform, have been developed to suppress the ground roll. However, the existing methods still require improvements in suppression performance and efficiency. Various studies on the suppression of ground roll in seismic data have recently been conducted using deep learning methods developed for image processing. In this paper, we introduce three models (DnCNN (De-noiseCNN), pix2pix, and CycleGAN), based on convolutional neural network (CNN) or conditional generative adversarial network (cGAN), for ground roll suppression and explain them in detail through numerical examples. Common shot gathers from the same field were divided into training and test datasets to compare the algorithms. We trained the models using the training data and evaluated their performances using the test data. When training these models with field data, ground roll removed data are required; therefore, the ground roll is suppressed by f-k filtering and used as the ground-truth data. To evaluate the performance of the deep learning models and compare the training results, we utilized quantitative indicators such as the correlation coefficient and structural similarity index measure (SSIM) based on the similarity to the ground-truth data. The DnCNN model exhibited the best performance, and we confirmed that other models could also be applied to suppress the ground roll.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.