• Title/Summary/Keyword: Existing Concrete Structures

Search Result 709, Processing Time 0.021 seconds

A Study on the proposal of Strength Presumption Equation of Concrete Using Admixture by Nondestructive Testing (비파괴 시험에 의한 혼화재를 사용한 콘크리트의 강도 추정식 제안에 관한 연구)

  • Kim Jeong-Sup;Shin Yong-Seok;Kim Koung-Ok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.3 s.21
    • /
    • pp.59-66
    • /
    • 2006
  • This study aims to estimate strength approximate to actual concrete strength by presenting appropriate non-destructive strength estimation expression with admixtures such as fly ash, blast furnace slag and silica fume which are used as cement substitute and owing to theirs of cement owing to their equal conditions to blending characteristics of concrete used for domestic structures and their recyclable properties. As a result of comparing error rate of existing expressions and this estimation expression, error rate of this estimation is reduced compared to existing expressions and has higher reliability. When conventional concrete expression is applied to admixture concrete, error rate occurs and then this study suggests the following estimation expressions depending on types of admixture concrete.

Statistical Study of Compressive Strength of Concrete in Structures for Irrigation (수리구조물에서 콘크리트 압축강도의 통계분석)

  • 이창수;박광수;신수균;김관호;이준구;김명원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.11-14
    • /
    • 2003
  • The purpose of this paper is to offer a base data of specification, so that the strength information of concrete in the structure for irrigation can be rationally determined the coefficient of variation of an existing irrigation structure and the best fit the ready-mixed concrete strength to specified strength $f_ck$. From analysis of concrete cylinders from about 30 numbers in southern Korea, it was concluded that the coefficient of variation of cylinder strength were approximately 5.9%. On the basis of the core strength test data, it was appeared that the average coefficient of variation for the existing irrigation structure can be taken as 17.8% for strength level 21MPa.

  • PDF

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • v.22 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.

Effects of deviation in materials' strengths on the lateral strength and damage of RC frames

  • Massumi, Ali;Sadeghi, Kabir;Moshtagh, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.289-297
    • /
    • 2018
  • The real behavior of the RC structures constructed based on the assumed specifications of the used materials is matched with the designed ones when the assumed and the applied specifications in construction are the same. Despite in the construction phase of the reinforced concrete (RC) structures always it is tried to implement the same specifications of materials as given in the executive drawings, but considering the unpredicted/uncontrolled parameters that affect the specification of materials, always there is a deviation between the constructed and the designed materials' specifications. The objective of this paper is to submit a guideline for the evaluation of the strength and damage to the existing RC structures encountered deviation in materials' strengths. To achieve this goal, the lateral strength (plastic behaviors) and damage to twenty-five RC moment-resisting frames (MRFs) are studied by applying the inelastic analysis. In this study, a couple of concrete and reinforcement strengths' deviations are investigated. The obtained results indicate that in general, there is a semi-linear relationship between the deviation in the strength of reinforcement and the changes in the lateral strength values of the MRFs. The relative effect of the deviation in the strength of reinforcements is more than the relative effect of the deviation in the concrete strength on the damage rate. The obtained results could be a guideline for the engineers in the survey of the existing buildings encountered deviation in materials' strengths during their construction phase.

Shrinkage and Durability Characteristics of Latex Modified Repair Mortar for Agricultural Concrete Structures (농업용 콘크리트 구조물용 라텍스개질 보수용 모르타르의 수축 및 내구성능 평가)

  • Won, Jong-Pil;Lee, Jae-Young;Park, Chan-Gi;Park, Seong-Gi;Kim, Wan-Young
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.23-30
    • /
    • 2007
  • This research was to evaluate the shrinkage and durability performance of latex modified repair mortar and to improve the service lift of the agricultural concrete structures. The shrinkage characteristics of the repair material creates the delamination of repair materials and existing concrete. It may reduce the service life of structures. Also the reduction of durability performance of the repair materials induces the destruction of the repaired concrete structures at early stage. In this research, plastic and drying shrinkage, thermal expansion coefficient for shrinkage properties, durability performance, permeability, repeated freezing and thawing, and resistance of chemical solution test were performed. Test results showed that the latex modified repair mortar indicated the shrinkage amount which the delamination does not happen, and the latex modified repair mortar appeared excellent long-term durability performance which can increase the service life.

Design-oriented strength and strain models for GFRP-wrapped concrete

  • Messaoud, Houssem;Kassoul, Amar;Bougara, Abdelkader
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.293-307
    • /
    • 2020
  • The aim of this paper is to develop design-oriented models for the prediction of the ultimate strength and ultimate axial strain for concrete confined with glass fiber-reinforced polymer (GFRP) wraps. Twenty of most used and recent design-oriented models developed to predict the strength and strain of GFRP-confined concrete in circular sections are selected and evaluated basing on a database of 163 test results of concrete cylinders confined with GFRP wraps subjected to uniaxial compression. The evaluation of these models is performed using three statistical indices namely the coefficient of the determination (R2), the root mean square error (RMSE), and the average absolute error (AAE). Based on this study, new strength and strain models for GFRP-wrapped concrete are developed using regression analysis. The obtained results show that the proposed models exhibit better performance and provide accurate predictions over the existing models.

Modeling the confined compressive strength of hybrid circular concrete columns using neural networks

  • Oreta, Andres W.C.;Ongpeng, Jason M.C.
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.597-616
    • /
    • 2011
  • With respect to rehabilitation, strengthening and retrofitting of existing and deteriorated columns in buildings and bridges, CFRP sheets have been found effective in enhancing the performance of existing RC columns by wrapping and bonding CFRP sheets externally around the concrete. Concrete columns and piers that are confined by both lateral steel reinforcement and CFRP are sometimes referred to as "hybrid" concrete columns. With the availability of experimental data on concrete columns confined by steel reinforcement and/or CFRP, the study presents modeling using artificial neural networks (ANNs) to predict the compressive strength of hybrid circular RC columns. The prediction of the ultimate confined compressive strength of RC columns is very important especially when this value is used in estimating the capacity of structures. The present ANN model used as parameters for the confining materials the lateral steel ratio (${\rho}_s$) and the FRP volumetric ratio (${\rho}_{FRP}$). The model gave good predictions for three types of confined columns: (a) columns confined with steel reinforcement only, (b) CFRP confined columns, and (c) hybrid columns confined by both steel and CFRP. The model may be used for predicting the compressive strength of existing circular RC columns confined with steel only that will be strengthened or retrofitted using CFRP.

Assessment of concrete degradation in existing structures: a practical procedure

  • Porco, Francesco;Uva, Giuseppina;Fiore, Andrea;Mezzina, Mauro
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.701-721
    • /
    • 2014
  • In the assessment of existing RC buildings, the reliable appraisal of the compressive strength of in-situ concrete is a fundamental step. Unfortunately, the data that can be obtained by the available testing methods are typically affected by a high level of uncertainty. Moreover, in order to derive indications about the degradation and ageing of the materials by on site tests, it is necessary to have the proper terms of comparison, that is to say, to know the reference data measured during the construction phases, that are often unavailable when the building is old. In the cases when such a comparison can be done, the in situ strength values typically turn out to be lower than the reference strength values (tests performed on taken samples during the construction). At this point, it is crucial to discern and quantify the specific effect induced by different factors: ageing of the materials; poor quality of the placement, consolidation or cure of the concrete during the construction phases; damage due to drilling. This paper presents a procedure for correlating the destructive compressive tests and non-destructive tests (ultrasonic pulse velocity tests) with the data documenting the compressive strength tested during the construction phases. The research work is aimed at identifying the factors that induce the difference between the in-situ strength and cubes taken from the concrete casting, and providing, so, useful information for the assessment procedure of the building.

Structural Evaluation and Remediation of Floor Slab Deflection

  • Park, Ki-Dong;Kim, Dae-Young;Joung, Dae-Ki
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.61-65
    • /
    • 2008
  • A 4-story reinforced concrete structure built above an underground parking garage shows some slab deflections, and the deflections of the concrete floor slabs are proposed to be alleviated by the application of light-weight topping material in conjunction with localized strengthening of the slabs. The application of light-weight concrete topping on the existing slab has been simulated and its performance to anticipated loads has been analyzed. The application of light-weight topping material imposes additional weight on the exiting floor slabs. This added weight on the existing slabs causes over-stressing of the slabs. This over-stressing can be alleviated by enhancing the load carrying capacity of the existing slabs. Additional load carrying capacity in the existing slabs can be developed by localized strengthening of the slabs utilizing techniques such as the application of fiber-reinforced composites on the bottom surface of the slabs, and application of fiber-reinforced composites adequately complements the capacity of the existing slabs to bear the additional load imposed by light-weight leveling material. Additional moments in the beam and columns induced by the application of the light-weight topping material were tabulated and compared with capacity. The moment D/C ratios of the beam and columns are well the range of acceptable limits, and the beam and columns are not overstressed by the application of the surcharge.

  • PDF

Synthesis of DOT Use of Beam End Protection for Extending the Life of Bridges

  • Radlinska, Aleksandra;McCarthy, Leslie Myers;Matzke, James;Nagel, Francis
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.3
    • /
    • pp.185-199
    • /
    • 2014
  • As the national transportation infrastructure ages and deteriorates, many existing bridges require frequent and costly maintenance and repairs. The objective of this work was to synthesize new and existing types of beam end coatings and treatments that have been proven to extend the life of new and existing concrete and steel bridge beams. A comprehensive literature review, along with online surveys and phone interviews of State department of transportations (DOTs) and coating manufacturers was conducted to gather information about existing and recently developed technologies. The study revealed that while many promising coatings and treatments are offered on the market, there is a lack of readily available laboratory results that would enable direct comparison of the available methods. This finding applies in terms of the coatings' durability and the potential for extending the service life of existing bridges. Most of the interviewed State DOTs' personnel assessed the products listed in respective DOT's Qualified Products Lists as performing 'well'. However, there was significant variability between states in the type of the products used. Among the agencies contacted, none was able to suggest the most promising or advanced products, either for concrete or steel bridge beam end treatments. This suggests that comprehensive laboratory evaluation would be necessary for selecting the best available beam end treatments and coatings.