DOI QR코드

DOI QR Code

Design-oriented strength and strain models for GFRP-wrapped concrete

  • Messaoud, Houssem (Laboratory of Structures, Geotechnics and Risks (LSGR), Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Kassoul, Amar (Laboratory of Structures, Geotechnics and Risks (LSGR), Department of Civil Engineering, Hassiba Benbouali University of Chlef) ;
  • Bougara, Abdelkader (Laboratory of Structures, Geotechnics and Risks (LSGR), Department of Civil Engineering, Hassiba Benbouali University of Chlef)
  • Received : 2020.03.27
  • Accepted : 2020.09.11
  • Published : 2020.09.25

Abstract

The aim of this paper is to develop design-oriented models for the prediction of the ultimate strength and ultimate axial strain for concrete confined with glass fiber-reinforced polymer (GFRP) wraps. Twenty of most used and recent design-oriented models developed to predict the strength and strain of GFRP-confined concrete in circular sections are selected and evaluated basing on a database of 163 test results of concrete cylinders confined with GFRP wraps subjected to uniaxial compression. The evaluation of these models is performed using three statistical indices namely the coefficient of the determination (R2), the root mean square error (RMSE), and the average absolute error (AAE). Based on this study, new strength and strain models for GFRP-wrapped concrete are developed using regression analysis. The obtained results show that the proposed models exhibit better performance and provide accurate predictions over the existing models.

Keywords

References

  1. Ahmad, S.H., Khaloot, A.R. and Irshaid, A. (1991), "Behaviour of concrete spirally confined by fibreglass filaments", Mag. Concrete Res., 43(156), 143-148. https://doi.org/10.1680/macr.1991.43.156.143.
  2. Al Abadi, H., Abo El-Naga, H., Shaia, H. and Paton-Cole, V. (2016), "Refined approach for modelling strength enhancement of FRP-confined concrete", Constr. Build. Mater., 119, 152-174. https://doi.org/10.1016/J.CONBUILDMAT.2016.04.119.
  3. Almusallam, T.H. (2007), "Behavior of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates", Compos. Part B: Eng., 38(5-6), 629-639. https://doi.org/10.1016/j.compositesb.2006.06.021.
  4. Arabshahi, A., Gharaei-Moghaddam, N. and Tavakkolizadeh, M. (2020), "Development of applicable design models for concrete columns confined with aramid fiber reinforced polymer using Multi-Expression Programming", Struct., 23, 225-244. https://doi.org/10.1016/j.istruc.2019.09.019.
  5. Au, C. and Buyukozturk, O. (2005), "Effect of fiber orientation and ply mix on fiber reinforced polymer-confined concrete", J. Compos. Constr., 9(5), 397-407. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:5(397).
  6. Baji, H., Ronagh, H.R. and Li, C.Q. (2016), "Probabilistic design models for ultimate strength and strain of FRP-confined concrete", J. Compos. Constr., 20(6), 04016051. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000704.
  7. Bakhshi, M., Abdollahi, B., Motavalli, M., Shekarchizade, M. and Gualibafian, M. (2007), "The experimental modeling of GFRP confined concrete cylinders subjected to axial loads", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, July.
  8. Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J. and Triantafillou, T.C. (2002), "Fiber-reinforced polymer composites for construction-State-of-the-Art review", J. Compos. Constr., 6(2), 73-87. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(73).
  9. Benzaid, R., Chikh, N. and Mesbah, H. (2009), "Study of the compressive behavior of short concrete columns confined by fiber reinforced composite", Arab. J. Sci. Eng., 34, 15-26.
  10. Berthet, J.F., Ferrier, E. and Hamelin, P. (2006), "Compressive behavior of concrete externally confined by composite jackets: Part B: modeling", Constr. Build. Mater., 20(5), 338-347. https://doi.org/10.1016/J.CONBUILDMAT.2005.01.029.
  11. Bisby, L.A., Dent, A.J.S. and Green, M.F. (2005), "Comparison of confinement models for fiber-reinforced polymer-wrapped concrete", ACI Struct. J., 102(1), 62-72. https://doi.org/10.14359/13531.
  12. Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/J.ENGSTRUCT.2017.02.047.
  13. Ciupala, M.A., Pilakoutas, K. and Mortazavi, A.A. (2007), "Effectiveness of FRP composites in confined concrete", Proceedings of the 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Concrete Structures, Patras, Greece, July.
  14. Comert, M., Goksu, C. and Ilki, A. (2010), "Towards a tailored stress-strain behavior for FRP confined low strength concrete", Third International Fib Congress Incorporating the PCI Annual Convention and Bridge Conference, Washington, DC, USA, May-June.
  15. Cui, C. and Sheikh, S.A. (2010), "Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers", J. Compos. Constr., 14(5), 553-561. https://doi.org/10.1061/(asce)cc.1943-5614.0000116.
  16. Dai, J.G., Bai, Y.L. and Teng, J.G. (2011), "Behavior and modeling of concrete confined with FRP composites of large deformability", J. Compos. Constr., 15(6), 963-973. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000230.
  17. De Lorenzis, L. and Tepfers, R. (2003), "Comparative study of models on confinement of concrete cylinders with fiber-reinforced polymer composites", J. Compos. Constr., 7(3), 219-237. https://doi.org/10.1061/(asce)1090-0268(2003)7:3(219).
  18. Ding, M., Chen, X., Zhang, X., Liu, Z. and Lu, J. (2018), "Study on seismic strengthening of railway bridge pier with CFRP and concrete jackets", Earthq. Struct., 15(3), 275-283. https://doi.org/10.12989/eas.2018.15.3.275.
  19. Djafar-Henni, I. and Kassoul, A. (2018), "Stress-strain model of confined concrete with Aramid FRP wraps", Constr. Build. Mater., 186, 1016-1030. https://doi.org/10.1016/J.CONBUILDMAT.2018.08.013.
  20. Elwan, S.K. and Omar, M.A. (2014), "Experimental behavior of eccentrically loaded RC slender columns strengthened using GFRP wrapping", Steel Compos. Struct., 17(3), 271-285. https://doi.org/10.12989/scs.2014.17.3.271.
  21. Fahmy, M.F.M. and Wu, Z. (2010), "Evaluating and proposing models of circular concrete columns confined with different FRP composites", Compos. Part B: Eng., 41(3), 199-213. https://doi.org/10.1016/J.COMPOSITESB.2009.12.001.
  22. Faella, C., Realfonzo, R. and Salerno, N. (2005), "R/C elements confined by FRP", Seismic Engineering for Concrete Structures - Italian Perspective, ACI Spring Convention, New York City, USA, April.
  23. Fallah Pour, A., Ozbakkaloglu, T. and Vincent, T. (2018), "Simplified design-oriented axial stress-strain model for FRP-confined normal- and high-strength concrete", Eng. Struct., 175, 501-516. https://doi.org/10.1016/J.ENGSTRUCT.2018.07.099.
  24. Fardis, M.N. and Khalili, H. (1981), "Concrete encased in fiberglass-feinforced plastic", ACI J Proc, 78(6), 440-6. doi:10.14359/10527.
  25. Fardis, M.N. and Khalili, H. (1982), "FRP-encased concrete as a structural material", Mag. Concrete Res., 34(121), 191-202. https://doi.org/10.1680/macr.1982.34.121.191.
  26. Green, M.F., Bisby, L.A., Fam, A.Z. and Kodur, V.K.R. (2006), "FRP confined concrete columns: Behaviour under extreme conditions", Cement Concrete Compos., 28(10), 928-937. https://doi.org/10.1016/J.CEMCONCOMP.2006.07.008.
  27. Harries, K.A. and Carey, S.A. (2003), "Shape and "gap" effects on the behavior of variably confined concrete", Cement Concrete Res., 33(6), 881-890. https://doi.org/10.1016/S0008-8846(02)01085-2.
  28. Harries, K.A. and Kharel, G. (2002), "Behavior and modeling of concrete subject to variable confining pressure", ACI Mater. J., 99(2), 180-189.
  29. Hou, D., Wu, Z., Zheng, J. and Cui, Y. (2015), "Seismic rehabilitation of substandard RC columns with partially deteriorated concrete using CFRP composites", Comput. Concrete, 15(1), 1-20. https://doi.org/10.12989/cac.2015.15.1.001.
  30. Huang, L., Gao, C., Yan, L., Kasal, B., Ma, G. and Tan, H. (2016), "Confinement models of GFRP-confined concrete: Statistical analysis and unified stress-strain models", J. Reinf. Plast. Compos., 35(11), 867-891. https://doi.org/10.1177/0731684416630609.
  31. Ilki, A., Kumbasar, N. and Koc, V. (2004), "Low strength concrete members externally confined with FRP sheets", Struct. Eng. Mech., 18(2), 167-194. https://doi.org/10.12989/sem.2004.18.2.167.
  32. Jiang, T. and Teng, J.G. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. https://doi.org/10.1016/j.engstruct.2007.01.010.
  33. Karbhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-verification of simple design equations", J. Mater. Civil Eng., 9(4), 185-193. https://doi.org/10.1061/(ASCE)0899-1561(1997)9:4(185).
  34. Keshtegar, B., Ozbakkaloglu, T. and Gholampour, A. (2017), "Modeling the behavior of FRP-confined concrete using dynamic harmony search algorithm", Eng. Comput., 33(3), 415-430. https://doi.org/10.1007/s00366-016-0481-y.
  35. Li, L.J, Xu, S.D, Zeng, L. and Guo, Y.C. (2013), "Compressive behavior of hybrid FRP confined concrete columns", The 2013 World Congress on Advances in Structural Engineering and Mechanics (ASEM13), Jeju, Korea, September.
  36. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X.
  37. Lam, L. and Teng, J.G. (2004), "Ultimate condition of fiber reinforced polymer-confined concrete", J. Compos. Constr., 8(6), 539-548. https://doi.org/10.1061/(asce)1090-0268(2004)8:6(539).
  38. Li, G., Maricherla, D., Singh, K., Pang, S.S. and John, M. (2006), "Effect of fiber orientation on the structural behavior of FRP wrapped concrete cylinders", Compos. Struct., 74(4), 475-483. https://doi.org/10.1016/J.COMPSTRUCT.2005.05.001.
  39. Lim, J.C., Karakus, M. and Ozbakkaloglu, T. (2016), "Evaluation of ultimate conditions of FRP-confined concrete columns using genetic programming", Comput. Struct., 162, 28-37. https://doi.org/10.1016/J.COMPSTRUC.2015.09.005.
  40. Lim, J.C. and Ozbakkaloglu, T. (2015), "Investigation of the influence of the application path of confining pressure: Tests on actively confined and FRP-confined concretes", J. Struct. Eng., 141(8), 04014203. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001177.
  41. Lim, J.C. and Ozbakkaloglu, T. (2015), "Confinement model for FRP-confined high-strength concrete", J. Compos. Constr., 18(4). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000376.
  42. Lin, H.J. and Chen, C.T. (2001), "Strength of concrete cylinder confined by composite materials", J. Reinf. Plast. Compos., 20(18), 1577-1600. https://doi.org/10.1177/073168401772679066.
  43. Lin, H.J. and Liao, C.I. (2004), "Compressive strength of reinforced concrete column confined by composite material", Compos. Struct., 65(2), 239-250. https://doi.org/10.1016/J.COMPSTRUCT.2003.11.001.
  44. Mandal, S., Hoskin, A. and Fam, A. (2005), "Influence of concrete strength on confinement effectiveness of fiber-reinforced polymer circular jackets", ACI Struct. J., 102(3), 383-392. https://doi.org/10.14359/14409.
  45. Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J Struct Eng., 114(8),1804-26. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  46. Mastrapa, J. (1997), "Effect of construction bond on confinement with fiber composites", Masters Thesis, University of Central Florida, Florida, USA.
  47. Matthys, S., Toutanji, H., Audenaert, K. and Taerwe, L. (2005), "Axial load behavior of large-scale columns confined with fiber-reinforced polymer composites", ACI Struct. J., 102(2), 258-267. https://doi.org/10.14359/14277.
  48. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539-561. https://doi.org/10.12989/acc.2017.5.5.539.
  49. Micelli, F. and Modarelli, R. (2013), "Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete", Compos. Part B: Eng., 45(1), 1420-1431. https://doi.org/10.1016/J.COMPOSITESB.2012.09.055.
  50. Mirmiran, A., Kargahi, M., Samaan, M.S. and Shahawy, M. (1996), "Composite FRP-concrete column with bi-directional external reinforcement", Proceedings of the 1st International Conference in Composites in Infrastructure, Arizona, USA.
  51. Miyauchi, K., Nishibayashi, S. and Inoue, S. (1997), "Estimation of strengthening effects with carbon fiber sheet for concrete column", Int. Symp. 3rd, Non-metallic Reinf. Concr. Struct., Sapporo, Japan.
  52. Moran, D.A. and Pantelides, C.P. (2002), "Variable strain ductility ratio for fiber-reinforced polymer-confined concrete", J. Compos. Constr., 6(4), 224-232. https://doi.org/10.1061/(asce)1090-0268(2002)6:4(224).
  53. Nanni, A. and Bradford, N.M. (1995), "FRP jacketed concrete under uniaxial compression", Constr. Build. Mater., 9(2), 115-124. https://doi.org/10.1016/0950-0618(95)00004-Y.
  54. Newman, K. and Newman, J.B. (1972), "Failure theories and design criteria for plain concrete". Structure, Solid Mechanics and Engineering Design: The Proceedings, International Association of Testing and Research Laboratories for Materials and Structures, London.
  55. Ozbakkaloglu, T. and Akin, E. (2012), "Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression", J. Compos. Constr., 16(4), 451-463. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000273.
  56. Ozbakkaloglu, T., Lim, J.C. and Vincent, T. (2013), "FRP-confined concrete in circular sections: Review and assessment of stress-strain models", Eng. Struct., 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
  57. Pessiki, S., Harries, K.A., Kestner, J.T., Sause, R. and Ricles, J.M. (2001), "Axial behavior of reinforced concrete columns confined with FRP jackets", J. Compos. Constr., 5(4), 237-245. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(237).
  58. Pham, T.M. and Hadi, M.N.S. (2014), "Confinement model for FRP confined normal- and high-strength concrete circular columns", Constr. Build. Mater., 69, 83-90. https://doi.org/10.1016/J.CONBUILDMAT.2014.06.036.
  59. Rashid, R.S.M. and Aboutaha, R.S. (2014), "Analytical model for CFRP strengthened circular RC column under elevated temperature", Comput. Concrete, 13(4), 517-529. https://doi.org/10.12989/cac.2014.13.4.517.
  60. Richart, F., Brandtzaeg, A. and Brown, R.L (1928), "A study of the failure of concrete under combined compressive ctresses". University of Illinois Bulletin, 26(12), University of Illinois at Urbana Champaign, USA.
  61. Saadatmanesh, H., Ehsani, M.R. and Li, M.W. (1994), "Strength and ductility of concrete columns externally reinforced with fiber composite straps", ACI Struct. J., 91(4), 434-447.
  62. Saafi, M., Toutanji, H. and Li, Z. (1999), "Behavior of concrete columns confined with fiber reinforced polymer tubes", ACI Mater. J., 96(4), 500-509. https://doi.org/10.14359/652.
  63. Sadeghian, P. and Fam, A. (2015), "Improved design-oriented confinement models for FRP-wrapped concrete cylinders based on statistical analyses", Eng. Struct., 87, 162-182. https://doi.org/10.1016/J.ENGSTRUCT.2015.01.024.
  64. Samaan, M., Mirmiran, A. and Shahawy, M. (1998), "Model of concrete confined by fiber composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025).
  65. Schmidt, M. and Lipson, H. (2009), "Distilling free-form natural laws from experimental data", Sci., 324(5923), 81-85. https://doi.org/10.1126/science.1165893.
  66. Shahawy, M., Mirmiran, A. and Beitelman, T. (2000), "Tests and modeling of carbon-wrapped concrete columns", Compos. Part B: Eng., 31(6-7), 471-480. https://doi.org/10.1016/S1359-8368(00)00021-4.
  67. Shao, Y., Zhu, Z. and Mirmiran, A. (2006), "Cyclic modeling of FRP-confined concrete with improved ductility", Cement Concrete Compos., 28(10), 959-968. https://doi.org/10.1016/J.CEMCONCOMP.2006.07.009.
  68. Shehata, I.A.E.M., Carneiro, L.A.V. and Shehata, L.C.D. (2002), "Strength of short concrete columns confined with CFRP sheets", Mater. Struct., 35(1), 50-58. https://doi.org/10.1007/BF02482090.
  69. Silva, M.A. and Rodrigues, C.C. (2006), "Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP", J. Mater. Civil Eng., 18(3), 334-342. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:3(334).
  70. Sonnenschein, R., Gajdosova, K. and Holly, I. (2016), "FRP composites and their using in the construction of bridges", Procedia Eng., 161, 477-482. https://doi.org/10.1016/j.proeng.2016.08.665.
  71. Spoelstra, M.R. and Monti, G. (1999), "FRP-confined concrete model", J. Compos. Constr., 3(3), 143-150. https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143).
  72. Sumathi, A. and Vignesh, S.A. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.
  73. Touhari, M. and Mitiche-Kettab, R. (2016), "Behaviour of FRP confined concrete cylinders: Experimental investigation and strength model", Periodica Polytechnica Civil Eng., 60(4), 647-660. https://doi.org/10.3311/PPci.8759.
  74. Toutanji, H. (1999), "Stress-strain characteristics of concrete columns externally confined with advanced fiber composite sheets", ACI Mater. J., 96(3), 397-404. https://doi.org/10.14359/639.
  75. Vincent, T. and Ozbakkaloglu, T. (2013), "Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high-strength concrete", Compos. Part B: Eng., 50, 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017.
  76. Wang, Y.F. and Wu, H.L. (2011), "Size effect of concrete short columns confined with aramid FRP jackets", J. Compos. Constr., 15(4), 535-544. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000178.
  77. Wu, G., Lu, Z.T. and Wu, Z.S. (2006), "Strength and ductility of concrete cylinders confined with FRP composites", Constr. Build. Mater., 20(3), 134-148. https://doi.org/10.1016/J.CONBUILDMAT.2005.01.022.
  78. Wu, G., Wu, Z.S., Lu, Z.T. and Ando, Y.B. (2008), "Structural performance of concrete confined with hybrid FRP composites", J. Reinf. Plast. Compos., 27(12), 1323-1348. https://doi.org/10.1177/0731684407084989.
  79. Wu, H.L. and Wang, Y.F. (2010), "Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets", Steel Compos. Struct., 10(6), 501-516. https://doi.org/10.12989/scs.2010.10.6.501.
  80. Wu, H.L., Wang, Y.F., Yu, L. and Li, X.R. (2009), "Experimental and computational studies on high-strength concrete circular columns confined by aramid fiber-reinforced polymer sheets", J. Compos. Constr., 13(2), 125-34. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:2(125).
  81. Wu, Y.F., Xu, X.S., Sun, J.B. and Jiang, C. (2012), "Analytical solution for the bond strength of externally bonded reinforcement", Compos. Struct., 94(11), 3232-3239. https://doi.org/10.1016/j.compstruct.2012.04.026.
  82. Xiao, Y. and Wu, H. (2000), "Compressive behavior of concrete confined by carbon fiber composite jackets", J. Mater. Civil Eng., 12(2), 139-146. https://doi.org/10.1061/(ASCE)0899-1561(2000)12:2(139).
  83. Xiao, Y. and Wu, H. (2003), "Compressive behavior of concrete confined by various types of FRP composite jackets", J. Reinf. Plast. Compos., 22(13), 1187-1201. https://doi.org/10.1177/0731684403035430.
  84. Youssef, M.N., Feng, M.Q. and Mosallam, A.S. (2007), "Stress-strain model for concrete confined by FRP composites", Compos. Part B: Eng., 38(5-6), 614-628. https://doi.org/10.1016/J.COMPOSITESB.2006.07.020.