• Title/Summary/Keyword: Existence condition

Search Result 974, Processing Time 0.042 seconds

EXISTENCE, UNIQUENESS AND STABILITY OF IMPULSIVE STOCHASTIC PARTIAL NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH INFINITE DELAYS

  • Anguraj, A.;Vinodkumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.739-751
    • /
    • 2010
  • This article presents the result on existence, uniqueness and stability of mild solution of impulsive stochastic partial neutral functional differential equations under sufficient condition. The results are obtained by using the method of successive approximation.

REGULARITY OF SOLUTIONS OF 3D NAVIER-STOKES EQUATIONS IN A LIPSCHITZ DOMAIN FOR SMALL DATA

  • Jeong, Hyo Suk;Kim, Namkwon;Kwak, Minkyu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.753-760
    • /
    • 2013
  • We consider the global existence of strong solutions of the 3D incompressible Navier-Stokes equations in a bounded Lipschitz do-main under Dirichlet boundary condition. We present by a very simple argument that a strong solution exists globally when the product of $L^2$ norms of the initial velocity and the gradient of the initial velocity and $L^{p,2}$, $p{\geq}4$ norm of the forcing function are small enough. Our condition is scale invariant and implies many typical known global existence results for small initial data including the sharp dependence of the bound on the volumn of the domain and viscosity. We also present a similar result in the whole domain with slightly stronger condition for the forcing.

Necessary and Sufficient Conditions for the Existence of Decoupling Controllers in the Generalized Plant Model

  • Park, Ki-Heon;Choi, Goon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.706-712
    • /
    • 2011
  • Necessary and sufficient conditions for the existence of diagonal, block-diagonal, and triangular decoupling controllers in linear multivariable systems for the most general setting are presented. The plant model in this study is sufficiently general to accommodate non-square plant and non-unity feedback cases with one-degree-of-freedom (1DOF) or two-degree-of-freedom (2DOF) controller configuration. The existence condition is described in terms of rank conditions on the coefficient matrices in partial fraction expansions.

EXISTENCE-AND-UNIQUENESS AND MEAN-SQUARE BOUNDEDNESS OF THE SOLUTION TO STOCHASTIC CONTROL SYSTEMS

  • Lu, Peilin;Cao, Caixia
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.513-522
    • /
    • 2013
  • This paper mainly deals with the stochastic control system, the existence and uniqueness of solutions and the behavior of solutions are investigated. Firstly, we obtain sufficient conditions which guarantee the existence and uniqueness of solutions to the stochastic control system. And then, boundedness of the solution to the system is achieved under mean-square linear growth condition.

GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE TYPE EQUATIONS

  • Cho, Yong-Geun;Ozawa, Tohru
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.5
    • /
    • pp.1065-1078
    • /
    • 2007
  • We consider initial value problems for the semirelativistic Hartree type equations with cubic convolution nonlinearity $F(u)=(V*{\mid}u{\mid}^2)u$. Here V is a sum of two Coulomb type potentials. Under a specified decay condition and a symmetric condition for the potential V we show the global existence and scattering of solutions.