• Title/Summary/Keyword: Exhaust gas flow control

Search Result 88, Processing Time 0.022 seconds

Experimental Study on Thermoelectric Generator Performance for Waste Heat Recovery in Vehicles (자동차 배기폐열 회수용 열전발전 시스템의 성능에 관한 연구)

  • Lee, Dae-Woong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.6
    • /
    • pp.287-293
    • /
    • 2014
  • Internal combustion engines release 30~40% of the energy from fossil fuels into the atmosphere in the form of exhaust gases. By utilizing this waste heat, plenty of energy can be conserved in the auto industry. Thermoelectric generation is one way of transforming the energy from engine's exhaust gases into electricity in a vehicle. The thermoelectric generators located on the exhaust pipe have been developed for vehicle applications. Different experiments with thermoelectric generators have been conducted under various test conditions as following examples: hot gas temperature, hot gas mass flow rate, coolant temperature, and coolant mass flow rate. The experimental results have shown that the generated electrical power increases significantly with the temperature difference between the hot and the cold side of the thermoelectric generator and the gas flow rate of the hot-side heat exchanger. In addition, the gas temperature of the hot-side heat exchanger decreases with the length of the thermoelectric generator, especially at a low gas flow rate.

Study on the Exhaust Heat Recovery Equipment in a Factory - On the Performance of a U-shape Multitube Heat Exchanger - (공장폐열(工場廢熱) 회수장치(回收裝置)에 관한 연구(硏究) -U자형(字型) 다관식(多管式) 열교환기(熱交換機)의 성능(性能)에 관하여-)

  • Kim, Yung Bok;Song, Hyun Kap
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-61
    • /
    • 1983
  • U shape multitube heat exchanger was equipped in the flue to recover the exhaust heat from the boiler system. The fluids of the exhaust heat recovery equipment were the flue gas as the hot fluid, and the water as the cold fluid. The flow geometry of the fluids was cross flow - two pass, the hot fluid being mixed and the cold fluid unmixed. The results of the theoretical and the experimental analysis and the economic evaluation are summarized as follows. 1) The heat exchanger effectiveness and the temperature efficiency of the hot fluid were about 35% when the fuel consumption rate was 140 - 150 L/15min. The temperature efficiency for the cold fluid ranged from 3.0% to 4.5%. The insulation efficiency ranged from 85% to 98%, which was better than the KS air preheater insulation efficiency of 90%. 2) The relationship between the fuel consumption rate, F, and the outlet temperature, $T_{h2}$, of the flue gas from the heat exchanger was $T_{h2}$ = 0.927F + 110. In order to prevent the low temperature corrosion from the coagulation of $SO_3$, it is necessary to maintain the fuel consumption rate above 82 L/15min. 3) The ratio of the exhaust heat from the boiler system to the total energy consumption was about 14.5%. With the installation of the exhaust heat recovery equipment, the energy recovery ratio to the exhaust heat was about 25%. Accordingly, about 3.6% of the total fuel consumption was estimated to be saved. 4) Economic analysis indicated that the installation of the exhaust heat recovery equipment was feasible to save the energy, because the capital reocvery period was only 10 months when the fuel consumption rate was 80 L/15min. 4 months when it was 160 L/15min. 5) Based on the theoretical and the experimental analysis, it was estimated to save the energy of about 18 million Won per year, if four heat exchangers are installed in a factory. 6) A further study is recommended to identify the relationship among the flow rate of the exhaust gas, the size of the heat exchanger and the capacity of the air preheater. For a maximum heat recovery from the exhaust gas an automatic control system is required to control the flow rate of the cold fluid depending on the boiler load.

  • PDF

Evaluation of Inner Flow Characteristics of Oxygen Sensor for Vehicle Exhaust System (자동차 배기계용 산소센서 내부유동 특성 평가)

  • Han, Dae-Kwang;Suh, Ho-Cheol;Yee, Jurng-Jae;Kang, Jung-Ho;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.47-54
    • /
    • 2012
  • An oxygen sensor installed in vehicle exhaust systems enables to measure the amount of oxygen in the exhaust gas, in which the measured data are collected and analyzed in ECU(Engine Control Unit). The oxygen sensor is exposed to the high speed exhaust gas at high temperature circumstance, so that protection caps are required not only to protect the susceptible measuring part, but also to provide the real time measurement without time delay. In this study, a new oxygen sensor with one protection cap was proposed, and the CFD analysis was carried out in order to compare the performance characteristics, such as flow speed and ratio of AOA(Age of Air), for the conventional and new oxygen sensor. The numerical results of CFD analysis provided the flow speed of 1.34m/s and the ratio of AOA of 3.43. The similar features obtained from the numerical results showed that the new oxygen sensor guarantees the same performance characteristics of the conventional ones.

A Study on Exhaust Gas Characteristics and Engine Performance of EGR Valve Installed Engine for Development of EGR Valve Test System (EGR 밸브 평가 장치 개발을 위한 EGR 장착 엔진 성능 및 배출 가스 특성 연구)

  • Na, D.H.;Ko, C.S.;Seo, H.J.;Lee, C.E.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.52-57
    • /
    • 2012
  • In this study, in order to understand contents and ranges of design for the EGR Valve test system for improving quality and performance of EGR Valve, engine performance and exhaust gas characteristic of 3L-class diesel engine was analyzed. Experimental operation of engine performance test was performed with 50% engine load and 20% and 100% opening ratio of EGR Valve. From test of performance and exhaust gas characteristic of engine, torque output of engine and temperature and pressure of inlet and outlet of EGR Valve were measured. As a result, for design of EGR Valve test system, input fluid flow of EGR Valve must be set the same amount with exhaust gas flow that was below of engine speed of 2,500 rpm, and temperature of inlet of EGR Valve must be set under about $510^{\circ}C$. And the difference of temperature between inlet and outlet of EGR Valve must be over than about $200^{\circ}C$. Exhaust gas of inlet and outlet of EGR Valve were under 1 bar that was not considerable, and the difference of pressure between inlet and outlet of EGR Valve were under 1 bar that could not effect on mechanical operation of EGR Valve.

Comparison of pollutant removal efficiency according to the locations of the supply and exhaust (격리병실내 급배기구 위치에 따른 오염물 제거효율 비교)

  • Won, An-Na
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.13-20
    • /
    • 2020
  • The Recently, several countries have been affected by respiratory diseases, resulting in renewed research interest in their prevention and control. One such example was the 2015 outbreak of Middle East Respiratory Syndrome (MERS) in South Korea and COVID-19. In this study, we performed experiments and simulations based on concentration decay using CO2 as the tracer gas to elucidate the pollutant-removal efficiency for different inlet and exhaust locations and outdoor air-supply ratios. The wall inlet exhibited a higher pollutant-removal efficiency, owing to the upward movement of the air from the lower zone to the upper one. In conclusion, it is recommended that a total air-conditioning plan for isolation rooms be established as well as efficient system operation for pollutant removal and air-flow control to prevent the transmission of infections from the patients to others.

A Study on Effects of Recirculated Exhaust Gas upon $NO_x$ and Soot Emissions of a Marine Diesel Engine with Scrubber EGR System (박용 디젤기관의 $NO_x$ 및 매연 배출물에 미치는 스크러버형 EGR 시스템 재순환배기의 영향에 관한 연구)

  • 배명환;하정호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.70-78
    • /
    • 2000
  • The effects of recirculated exhaust gas on the characteristics of ;$NO_x$ and soot emissions under a wide range of engine load have been experimentally investigated by a water-cooled, four-cylinder, indirect injection, four cycle and marine diesel engine operating at two kinds of engine speeds. The purpose of the present study is to develop the EGR control system for reducing $NO_x$ and soot emissions simultaneously in diesel engines. The EGR system is used to reduce NOx emissions, and a novel diesel soot removal apparatus with a cylinder-type scrubber for the experiment system which has 6 water injectors(A water injector is made up 144 nozzles with 1.0mm in diameter) is specially designed and manufactured to reduce the soot contents in the recirculated exhaust gas to intake system of the engines. The intake oxygen concentration obtained by the intake air flow and the oxygen concentration in the recirculated exhaust gas, and the exhaust oxygen concentration measured in exhaust manifold are used to analyse and discuss the influences of EGR on NOx and soot emissions. The experiments are performed at the fixed fuel injection timing of $15.3^{\circ}$ BTDC regardless of experimental conditions. It is found that $NO_x$ emissions decrease and soot emissions increase owing to the drop of intake oxygen concentration and exhaust oxygen concentration as EGR rate rises. Also, one can conclude that it is sufficient for the scrubber EGR system with a novel diesel soot removal apparatus to reduce $NO_x$ emissions, but not to reduce soot emissions.

  • PDF

Effects of Mixture Flow and Ignition Characteristics on the Engine Performance (혼합기의 유동과 점화특성이 기관성능에 미치는 영향)

  • 이중순;김진영;정성식;하종률;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.37-44
    • /
    • 1998
  • Lean burn combustion is an important concept for improving the fuel consumption and exhaust emissions. However, the lean burning is associated with increased cycle-to-cycle combustion variations due to the ignition instabilities and redu- ced flame propagation rates. Engine stability under lean mixture conditions could be improved by increasing flame speed through enhanced flow characteristics and by securing ignitability with improvement of ignition systems. The effects of flow motion and ignition characteristics on the combustion performances were investigated in a 4-valve SI engine. Flow motions of tumble-swirl were varied with a swirl control valve attached at the inlet ports, while ignition energy and its distribution were controlled in a high -frequency ignition system by changing spark duration and spark frequency. The improvement of lean burn performance by the optimum flow motion and ignition characteristics is discussed.

  • PDF

A/F Control of an MPI Engine on Transient Conditions with an Intergration type Ultrasonic Flow Meter (적분형 초음파 유량계를 이용한 MPI 엔진의 비정상상태 공연비 제어)

  • 김중일;장준석;고상근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.36-47
    • /
    • 1999
  • Three-way catalyst converter, cleaning up the exhaust gas contamination of SI engine, has the best efficiency when A/F ratio is near the stoichiometry . The feedback control using oxygen sensors in the exhaust manifold has limits caused by the system delays. So the accurate measurement of air flow rate to an engine is essential to control the fuel injection rate especially on transient condition like the rapid throttle opening and closing. To measure the rapid change of flow rates. the air flow meter for the engine requires quick response, flow reversal detection, and linearity . Tjhe proposed integration type air flow meter (IFM), composed of an ultrasonic flow meter with an integration circuit, has significantly improved the measurement accuracy of air mass inducted through the throttle body. The proposed control method estimated the air mass at the cylinder port using the measured air mass at the throttle . For the fuel dynamic model, the two constant fuel model is introduced . The control parameters from air and fuel dynamics are tuned to minimize the excursion of the air fuel ratio. As a result A/F ratio excursion can be reduced within 5% when throttle rapidly opens and closes at the various engine conditions.

  • PDF

Analysis of Heat Exchanging Performance of Heat Recovering Device Attached to Exhaust Gas Duct (열회수장치에 의한 열회수성능 분석)

  • 서원명;윤용철;강종국
    • Journal of Bio-Environment Control
    • /
    • v.9 no.4
    • /
    • pp.212-222
    • /
    • 2000
  • This study was performed to investigate the performance of heat recovery device attached to exhaust gas flue connected to combustion chamber of greenhouse heating system. The experimental heat recovery system is mainly consisted of LPG combustion chamber and two heat recovery units; unit-A is attached directly to the exhaust gas flue, and unit-B is connected with unit-A. Heat recovery performance was evaluated by estimating total energy amounts by using enthalpy difference between two measurement points together with mass flow rate of gas and/or air passing through each heat recovery unit depending on 5 different flow rates controlled by voltage meter. The results of this experimental study, such as heat exchange behavior of supply air tubes and exhaust air passages crossing the tubes, pressure drop between inlet and outlet, heat recovery performance of exchange unit, etc., will be used as fundamental data for designing optimum heat recovery device to be used for fuel saving purpose by reducing heat loss amounts mostly wasted outside of greenhouse through flue.

  • PDF

Exhaust Noise Control with the Active Muffler in Exhaust System of Vehicle (상용차 배기계에서 액티브 머플러를 이용한 배기 소음 제어)

  • 김홍섭;홍진석;오재응;송진호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 1998
  • In this study, active muffler was designed and was manufactured for exhaust noise reduction of commercial vehicle, then experiment of real vehicle was conducted. In a manufactured active muffler, because the flow of exhaust noise in tail pope outlet are become a plane wave, the global reduction if radiation noise from outlet and the placement of error microphone to avoid the exhaust gas of high temperature could be implemented. In control algorithm, reduction of noise of engine driving frequency and harmonic frequency can be archieved using proposed reference signal including a fixed speed state(2,000rpm, 3,000rpm, 4,000rpm) and a run-up speed state(2,000rpm$\rightarrow$4,000rpm) is accomplished with the active muffler installed in vehicle.

  • PDF