• Title/Summary/Keyword: Excitation-contraction coupling

Search Result 25, Processing Time 0.019 seconds

Calumenin Interacts with SERCA2 in Rat Cardiac Sarcoplasmic Reticulum

  • Sahoo, Sanjaya Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Calumenin, a multiple EF-hand $Ca^{2+}$ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on $Ca^{2+}$ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of $Ca^{2+}$ transients. Among them, prolongation of time to 50% baseline ($T_{50}$) was the most outstanding change in electrically-evoked $Ca^{2+}$ transients. The higher $T_{50}$ was due to an inhibition of SERCA2-mediated $Ca^{2+}$ uptake into SR, as tested by oxalate-supported $Ca^{2+}$ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of $Ca^{2+}$ uptake during the EC coupling process.

Computational analysis of heart mechanics using a cell-autonomic nerve control-hemodynamic system coupled model (세포-신경계-혈류역학 시스템 통합모델에 의한 심장역학 분석)

  • Jun, Hyung-Min;Shim, Eun-Bo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2941-2946
    • /
    • 2007
  • A model of the cardiovascular system coupling cell, hemodynamics and autonomic nervecontrol function is proposed for analyzing heart mechanics. We developed a comprehensive cardiovascular model with multi-physics and multi-scale characteristics that simulates the physiological events from membrane excitation of a cardiac cell to contraction of the human heart and systemic blood circulation and ultimately to autonomic nerve control. Using this model, we delineatedthe cellular mechanism of heart contractility mediated by nerve control function. To verify the integrated method, we simulated a 10% hemorrhage, which involves cardiac cell mechanics, circulatory hemodynamics, and nerve control function. The computed and experimental results were compared. Using this methodology, the state of cardiac contractility, influenced by diverse properties such as the afterload and nerve control systems, is easily assessed in an integrated manner.

  • PDF

Characterization of calumenin in mouse heart

  • Sahoo, Sanjaya Kumar;Kim, Do-Han
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.158-163
    • /
    • 2010
  • Calumenin is a multiple EF-hand $Ca^{2+}$-binding protein located in the endo/sarcoplasmic reticulum of mammalian hearts. Calumenin belongs to the CREC family of $Ca^{2+}$-binding proteins having multiple EF-hands. $Ca^{2+}$ homeostasis in the sarcoplasmic reticulum (SR) of mammalian hearts is maintained by RyR2, SERCA2 and other associated SR resident proteins. Evidence suggests that calumenin interacts with RyR2 and SERCA2, and therefore changes in the expression of calumenin could alter $Ca^{2+}$ cycling in mouse heart. In this review, current knowledge of the biochemical and functional roles of calumenin in mouse heart is described.

Disruption of Cardiac $Na^+-Ca^{2+}$ Exchanger Gene in Mice

  • Cho, Chung-Hyun;Lee, C. O.;Shin, Hee-Sup
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.65-65
    • /
    • 1999
  • Na$^{+}$-Ca$^{2+}$ Exchanger is known to playa critical role in the regulation of intracellular $Ca^{2+}$ in many tissues and cells. In heart, the Na$^{+}$-Ca$^{2+}$ exchange is the principal $Ca^{2+}$ extrusion mechanism and affects cardiac excitation-contraction coupling. To understand the functional role of cardiac Na$^{+}$ -Ca$^{2+}$ exchanger (NCXl) in vivo, we tried to ablate the cardiac Na$^{2+}$-Ca$^{2+}$ exchanger gene locus by the use of the gene targeting technologies.(omitted)ted)

  • PDF

Stoichiometry of $Ns^+/Ca^{2+}$ Exchange Quantified with Ion-selective Microelectrodes in Giant Excised Cardiac Membrane Patches

  • kang, Tong Mook;Hilgemann, Donald W.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.30-30
    • /
    • 2003
  • Without a definitive resolution of stoichiometry of cardiac Na$^{+}$-Ca$^{2+}$exchange (NCX), we cannot proceed to any quantitative analysis of exchange function as well as cardiac excitation-contraction coupling. The stoichiometry of cardiac NCX, however, is presently in doubt because reversal potentials determined by various groups range between those expected for a 3-to-1 and a 4-to-1 flux coupling. For a new perspective on this problem, we have used ion-selective microelectrodes to quantify directly exchanger-mediated fluxes of $Ca^{2+}$and Na$^{+}$in giant membrane patches. $Ca^{2+}$- and Na$^{+}$-selective microelectrodes, fabricated from quartz capillaries, are placed inside of the patch pipettes to detect extracellular ion transients associated with exchange activity. Ion changes are monitored at various distances from the membrane, and the absolute ion fluxes through NCX are determined via simulations of ion diffusion and compared with standard ion fluxes (Ca$^{2+}$ fluxes mediated by $Ca^{2+}$ ionophore, and Na$^{+}$ fluxes through gramicidin channels and Na$^{+}$/K$^{+}$pumps). Both guinea pig myocytes and NCX1-expressing BHK cells were employed, and for both systems the calculated stoichiometries for inward and outward exchange currents range between 3.2- and 3.4-to-1. The coupling ratios do not change significantly when currents are varied by changing cytoplasmic [Ca$^{2+}$] or by adding cytoplasmic Na$^{+}$. The exchanger reversal potentials, measured in both systems under several ionic conditions, range from 3.1- to 3.3-to-1. Taken together, a clear discrepancy from a NCX stoichiometry of 3-to-1 was obtained. Further definitive experiments are required to acquire a fixed number, and the present working hypothesis is that NCX current has an extra current via ‘conduction mode’.ent via ‘conduction mode’.

  • PDF

Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane

  • Park, Sun Hwa;Kim, Ami;An, Jieun;Cho, Hyun Sung;Kang, Tong Mook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.529-543
    • /
    • 2020
  • In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+ channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

Effect of Propranolol on the $Ca^{++}$-regulation of Cardiac Sarcoplasmic Reticulum and Mitochondria (Propranolol이 심근 sarcoplasmic reticulum 및 mitochondria 의 $Ca^{++}$ 조절작용에 미치는 효과에 관한 연구)

  • 최수승
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.197-208
    • /
    • 1986
  • Propranolol is one of clinically useful antiarrhythmic agents and electrophysiologically classified as group II. And the negative inotropic effect which is not related to adrenolytic effect has been demonstrated with high concentration of propranolol. On the other hand, it has been well known that the calcium plays a central role in excitation-contraction coupling process of myocardium and also in electrophysiological changes of cell membrane. Author studies the effect of propranolol on calcium uptake and release in sarcoplasmic reticulum and mitochondria prepared from porcine myocardium to investigate the mechanism of action of propranolol on myocardium. The results are summarized as follow: 1] The maximum Ca++-uptake of sarcoplasmic reticulum is inhibited by propranolol in a dose dependent manner. 2] The release of calcium from sarcoplasmic reticulum is not affected by propranolol but with higher than 1x10-3 M of propranolol, rate of calcium release from sarcoplasmic reticulum is decreased. 3] Propranolol inhibits the maximum uptake and uptake rate of calcium in mitochondria non-competitively. [Ki = 6.21 x 10-4 M] 4] The rate of Na+ induced calcium release from mitochondrion shows a function of [Na+]2 and is inhibited by propranolol with the concentration significantly lower than that affect the calcium uptake in sarcoplasmic reticulum and in mitochondria [Ki = 2.91 x 10-5 M]. These results suggest that propranolol affects the intracellular calcium homeostasis which may considered to be one of the mechanism of action of propranolol on myocardium.

  • PDF

Unchanged Protein Level of Ryanodine Receptor but Reduced $[^3H]$ Ryanodine Binding of Cardiac Sarcoplasmic Reticulum from Diabetic Cardiomyopathy Rats

  • Lee, Eun-Hee;Seo, Young-Ju;Kim, Young-Hoon;Kim, Hae-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.397-405
    • /
    • 2001
  • The ryanodine receptor, a $Ca^{2+}$ release channel of the sarcoplasmic reticulum (SR), is responsible for the rapid release of $Ca^{2+}$ that activates cardiac muscle contraction. In the excitation-contraction coupling cascade, activation of SR $Ca^{2+}$ release channel is initiated by the activity of sarcolemmal $Ca^{2+}$ channels, the dihydropyridine receptors. Previous study showed that the relaxation defect of diabetic heart was due to the changes of the expressional levels of SR $Ca^{2+}$ATPase and phospholamban. In the diabetic heart contractile abnormalities were also observed, and one of the mechanisms for these changes could include alterations in the expression and/or activity levels of various $Ca^{2+}$ regulatory proteins involving cardiac contraction. In the present study, underlying mechanisms for the functional derangement of the diabetic cardiomyopathy were investigated with respect to ryanodine receptor, and dihydropyridine receptor at the transcriptional and translational levels. Quantitative changes of ryanodine receptors and the dihydropyridine receptors, and the functional consequences of those changes in diabetic heart were investigated. The levels of protein and mRNA of the ryanodine receptor in diabetic rats were comparable to these of the control. However, the binding capacity of ryanodine was significantly decreased in diabetic rat hearts. Furthermore, the reduction in the binding capacity of ryanodine receptor was completely restored by insulin. This result suggests that there were no transcriptional and translational changes but functional changes, such as conformational changes of the $Ca^{2+}$ release channel, which might be regulated by insulin. The protein level of the dihydropyridine receptor and the binding capacity of nitrendipine in the sarcolemmal membranes of diabetic rats were not different as compared to these of the control. In conclusion, in diabetic hearts, $Ca^{2+}$ release processes are impaired, which are likely to lead to functional derangement of contraction of heart. This dysregulation of intracellular $Ca^{2+}$ concentration could explain for clinical findings of diabetic cardiomyopathy and provide the scientific basis for more effective treatments of diabetic patients. In view of these results, insulin may be involved in the control of intracellular $Ca^{2+}$ in the cardiomyocyte via unknown mechanism, which needs further study.

  • PDF

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa;Park, Chang Sik;Sreenivasaiah, Pradeep Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.149-155
    • /
    • 2016
  • In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

Effects of Azumolene on Ryanodine Binging to Sarcoplasmic Reticulum of Normal and Malignant Hyperthermia Sucseptible Swine Skeletal Muscles

  • Kim, Do-Han;Lee, Young-Sup
    • Animal cells and systems
    • /
    • v.1 no.1
    • /
    • pp.77-80
    • /
    • 1997
  • DOantrolene is a primary specific therapeutic drug for prevention and treatment of malignant hyperthermia symptoms. The mechanisms underlying the therapeutic effects of the drug are not well understood. The present study aimed at the characterization of the effects of azumolene, a water soluble dantrolene analogue, on ryanodine binding to sarcoplasmic reticulum (SR) from normal and malign::lnt hyperthermia susceptible (MHS) swine muscles. Characteristics of $[^3H]ryanodine$ binding were clearly different between the two types of SR. Kinetic analysis of eH]ryanodine binding to SR in the presence of $2{\mu}M$ $Ca^{2+}$ showed that association constant $(K_{ryanodine}_7$ is significantly higher in MHS than normal muscle SR $(2.83 vs. 1.32{\times}10^7 M^{-1}$, whereas the maximal ryanodine binding capacity $(B_{max})$ is similar between the two types of SR. Addition of azumolene $(e.g. 400{\mu}M)$ did not significantly alter both $K_{ryanodine}$ and $B_{max}$ of $[^3H]$ryanodine binding in both types of SR, indicating that the azumolene effect was not on the ryanodine binding sites. Addition of caffeine activated $[^3H]$ ryanodine binding in both types of SR, and caffeine sensitivity was significantly higher in MHS muscle SR than normal muscle SR $(K_{caffeine}:3.24 vs. 0.82 {\times} 10^2 M^{-l}). Addition of azumolene $(e.g.400{\mu}M)$ decreased Kcaffeine without significant change in $B_{max}$ in both types of SR suggesting that azumolene competes with caffeine binding site(s). These results suggest that malignant hyperthermia symptoms are caused at least in part by greater sensitivity of the MHS muscle SR to the $Ca^{2+}$ release drug(s), and that azumolene can reverse the symptoms by reducing the drug affinity to $Ca^{2+}$ release channels.

  • PDF