DOI QR코드

DOI QR Code

Characterization of Ca2+-Dependent Protein-Protein Interactions within the Ca2+ Release Units of Cardiac Sarcoplasmic Reticulum

  • Rani, Shilpa (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology) ;
  • Park, Chang Sik (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology) ;
  • Sreenivasaiah, Pradeep Kumar (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology) ;
  • Kim, Do Han (School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology)
  • Received : 2015.10.15
  • Accepted : 2015.11.03
  • Published : 2016.02.29

Abstract

In the heart, excitation-contraction (E-C) coupling is mediated by $Ca^{2+}$ release from sarcoplasmic reticulum (SR) through the interactions of proteins forming the $Ca^{2+}$ release unit (CRU). Among them, calsequestrin (CSQ) and histidine-rich $Ca^{2+}$ binding protein (HRC) are known to bind the charged luminal region of triadin (TRN) and thus directly or indirectly regulate ryanodine receptor 2 (RyR2) activity. However, the mechanisms of CSQ and HRC mediated regulation of RyR2 activity through TRN have remained unclear. We first examined the minimal KEKE motif of TRN involved in the interactions with CSQ2, HRC and RyR2 using TRN deletion mutants and in vitro binding assays. The results showed that CSQ2, HRC and RyR2 share the same KEKE motif region on the distal part of TRN (aa 202-231). Second, in vitro binding assays were conducted to examine the $Ca^{2+}$ dependence of protein-protein interactions (PPI). The results showed that TRN-HRC interaction had a bell-shaped $Ca^{2+}$ dependence, which peaked at pCa4, whereas TRN-CSQ2 or TRN-RyR2 interaction did not show such $Ca^{2+}$ dependence pattern. Third, competitive binding was conducted to examine whether CSQ2, HRC, or RyR2 affects the TRN-HRC or TRN-CSQ2 binding at pCa4. Among them, only CSQ2 or RyR2 competitively inhibited TRN-HRC binding, suggesting that HRC can confer functional refractoriness to CRU, which could be beneficial for reloading of $Ca^{2+}$ into SR at intermediate $Ca^{2+}$ concentrations.

Keywords

References

  1. Arvanitis, D.A., Vafiadaki, E., Fan, G.C., Mitton, B.A., Gregory, K.N., Del Monte, F., Kontrogianni-Konstantopoulos, A., Sanoudou, D., and Kranias, E.G. (2007). Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart Circ. Physiol. 293, H1581-1589. https://doi.org/10.1152/ajpheart.00278.2007
  2. Beard, N.A., Casarotto, M.G., Wei, L., Varsanyi, M., Laver, D.R., and Dulhunty, A.F. (2005). Regulation of ryanodine receptors by calsequestrin: effect of high luminal $Ca^{2+}$ and phosphorylation. Biophys. J. 88, 3444-3454. https://doi.org/10.1529/biophysj.104.051441
  3. Bers, D.M. (2002). Cardiac excitation-contraction coupling. Nature 415, 198-205. https://doi.org/10.1038/415198a
  4. Boncompagni, S., Thomas, M., Lopez, J.R., Allen, P.D., Yuan, Q., Kranias, E.G., Franzini-Armstrong, C., and Perez, C.F. (2012). Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS One 7, e39962. https://doi.org/10.1371/journal.pone.0039962
  5. Fan, G.C., Gregory, K.N., Zhao, W., Park, W.J., and Kranias, E.G. (2004). Regulation of myocardial function by histidine-rich, calcium-binding protein. Am. J. Physiol. Heart Circ. Physiol. 287, H1705-1711. https://doi.org/10.1152/ajpheart.01211.2003
  6. Franzini-Armstrong, C., Protasi, F., and Tijskens, P. (2005). The assembly of calcium release units in cardiac muscle. Ann. N. Y. Acad. Sci. 1047, 76-85. https://doi.org/10.1196/annals.1341.007
  7. Goonasekera, S.A., Beard, N.A., Groom, L., Kimura, T., Lyfenko, A.D., Rosenfeld, A., Marty, I., Dulhunty, A.F., and Dirksen, R.T. (2007). Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation contraction coupling. J. Gen. Physiol. 130, 365-378. https://doi.org/10.1085/jgp.200709790
  8. Guo, W., and Campbell, K.P. (1995). Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum. J. Biol. Chem. 270, 9027-9030. https://doi.org/10.1074/jbc.270.16.9027
  9. Guo, W., Jorgensen, A.O., Jones, L.R., and Campbell, K.P. (1996). Biochemical characterization and molecular cloning of cardiac triadin. J. Biol. Chem. 271, 458-465. https://doi.org/10.1074/jbc.271.1.458
  10. Gyorke, I., Hester, N., Jones, L.R., and Gyorke, S. (2004). The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121-2128. https://doi.org/10.1016/S0006-3495(04)74271-X
  11. Hasenfuss, G., Meyer, M., Schillinger, W., Preuss, M., Pieske, B., and Just, H. (1997). Calcium handling proteins in the failing human heart. Basic Res. Cardiol. 92 Suppl 1, 87-93.
  12. Jones, L.R., Zhang, L., Sanborn, K., Jorgensen, A.O., and Kelley, J. (1995). Purification, primary structure, and immunological characterization of the 26-kDa calsequestrin binding protein (junctin) from cardiac junctional sarcoplasmic reticulum. J. Biol. Chem. 270, 30787-30796. https://doi.org/10.1074/jbc.270.51.30787
  13. Kim, E., Shin, D.W., Hong, C.S., Jeong, D., Kim, D.H., and Park, W.J. (2003). Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich $Ca^{2+}$ binding protein). Biochem. Biophys. Res. Commun. 300, 192-196. https://doi.org/10.1016/S0006-291X(02)02829-2
  14. Kim, T., Kahng, Y.H., Lee, T., Lee, K., and Kim, D.H. (2013). Graphene films show stable cell attachment and biocompatibility with electrogenic primary cardiac cells. Mol. Cells 36, 577-582. https://doi.org/10.1007/s10059-013-0277-5
  15. Knollmann, B.C. (2009). New roles of calsequestrin and triadin in cardiac muscle. J. Physiol. 587, 3081-3087. https://doi.org/10.1113/jphysiol.2009.172098
  16. Kobayashi, Y.M., Alseikhan, B.A., and Jones, L.R. (2000). Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. J. Biol. Chem. 275, 17639-17646. https://doi.org/10.1074/jbc.M002091200
  17. Lee, H.G., Kang, H., Kim, D.H., and Park, W.J. (2001). Interaction of HRC (histidine-rich $Ca^{2+}$-binding protein) and triadin in the lumen of sarcoplasmic reticulum. J. Biol. Chem. 276, 39533-39538. https://doi.org/10.1074/jbc.M010664200
  18. Lee, E.H., Rho, S.H., Kwon, S.J., Eom, S.H., Allen, P.D., and Kim, D.H. (2004a). N-terminal region of FKBP12 is essential for binding to the skeletal ryanodine receptor. J. Biol. Chem. 279, 26481-26488. https://doi.org/10.1074/jbc.M309574200
  19. Lee, J.M., Rho, S.H., Shin, D.W., Cho, C., Park, W.J., Eom, S.H., Ma, J., and Kim, D.H. (2004b). Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin. J. Biol. Chem. 279, 6994-7000. https://doi.org/10.1074/jbc.M312446200
  20. Lehnart, S.E., Maier, L.S., and Hasenfuss, G. (2009). Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail. Rev. 14, 213-224. https://doi.org/10.1007/s10741-009-9146-x
  21. Liu., B., Ho., H.T., Brunello., L., Unudurthi., S.D., Lou., Q., Belevych., A.E., Qian., L., Kim, D.H., Cho., C., Janssen., P.M.L., et al. (2015). Ablation of HRC alleviates cardiac arrhythmia and improves abnormal Ca handling in CASQ2 knockout mice prone to CPVT. Cardiovasc. Res. [in press].
  22. Park, C.S., Cha, H., Kwon, E.J., Jeong, D., Hajjar, R.J., Kranias, E.G., Cho, C., Park, W.J., and Kim, D.H. (2012). AAV-mediated knock-down of HRC exacerbates transverse aorta constrictioninduced heart failure. PLoS One 7, e43282. https://doi.org/10.1371/journal.pone.0043282
  23. Picello, E., Damiani, E., and Margreth, A. (1992). Low-affinity $Ca^{2+}$- binding sites versus Zn(2+)-binding sites in histidine-rich $Ca^{2+}$- binding protein of skeletal muscle sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 186, 659-667. https://doi.org/10.1016/0006-291X(92)90797-O
  24. Postma, A.V., Denjoy, I., Hoorntje, T.M., Lupoglazoff, J.M., Da Costa, A., Sebillon, P., Mannens, M.M., Wilde, A.A., and Guicheney, P. (2002). Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 91, e21-26. https://doi.org/10.1161/01.RES.0000038886.18992.6B
  25. Priori, S.G., and Napolitano, C. (2005). Cardiac and skeletal muscle disorders caused by mutations in the intracellular $Ca^{2+}$ release channels. J. Clin. Invest. 115, 2033-2038. https://doi.org/10.1172/JCI25664
  26. Sacchetto, R., Damiani, E., Turcato, F., Nori, A., and Margreth, A. (2001). $Ca^{2+}$-dependent interaction of triadin with histidine-rich $Ca^{2+}$-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125-1134. https://doi.org/10.1006/bbrc.2001.6126
  27. Shin, D.W., Ma, J., and Kim, D.H. (2000). The asp-rich region at the carboxyl-terminus of calsequestrin binds to $Ca^{2+}$ and interacts with triadin. FEBS Lett. 486, 178-182. https://doi.org/10.1016/S0014-5793(00)02246-8
  28. Wium, E., Dulhunty, A.F., and Beard, N.A. (2012). A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 7, e43817. https://doi.org/10.1371/journal.pone.0043817
  29. Wyszynski, M., Lin, J., Rao, A., Nigh, E., Beggs, A.H., Craig, A.M., and Sheng, M. (1997). Competitive binding of alpha-actinin and calmodulin to the NMDA receptor. Nature 385, 439-442. https://doi.org/10.1038/385439a0
  30. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M., and Jones, L.R. (1997). Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 272, 23389-23397. https://doi.org/10.1074/jbc.272.37.23389

Cited by

  1. Three residues in the luminal domain of triadin impact on Trisk 95 activation of skeletal muscle ryanodine receptors vol.468, pp.11-12, 2016, https://doi.org/10.1007/s00424-016-1869-7
  2. Astragaloside IV Inhibits Membrane Ca2+ Current but Enhances Sarcoplasmic Reticulum Ca2+ Release vol.45, pp.04, 2017, https://doi.org/10.1142/S0192415X1750046X
  3. The Histidine-Rich Calcium Binding Protein in Regulation of Cardiac Rhythmicity vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.01379
  4. The structure of a calsequestrin filament reveals mechanisms of familial arrhythmia vol.27, pp.12, 2016, https://doi.org/10.1038/s41594-020-0510-9