Calumenin Interacts with SERCA2 in Rat Cardiac Sarcoplasmic Reticulum

  • Sahoo, Sanjaya Kumar (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Kim, Do Han (Department of Life Science, Gwangju Institute of Science and Technology)
  • Received : 2008.02.18
  • Accepted : 2008.04.28
  • Published : 2008.09.30

Abstract

Calumenin, a multiple EF-hand $Ca^{2+}$ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on $Ca^{2+}$ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of $Ca^{2+}$ transients. Among them, prolongation of time to 50% baseline ($T_{50}$) was the most outstanding change in electrically-evoked $Ca^{2+}$ transients. The higher $T_{50}$ was due to an inhibition of SERCA2-mediated $Ca^{2+}$ uptake into SR, as tested by oxalate-supported $Ca^{2+}$ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of $Ca^{2+}$ uptake during the EC coupling process.

Keywords

References

  1. Arvanitis, D.A., Vafiadaki, E., Fan, G.-C., Mitton, B.A., Gregory, K.N., Del Monte, F., Kontrogianni-Konstantopoulos, A., Sanoudou, D., and Kranias, E.G. (2007). Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol. Heart Circ. Physiol. 293, H1581-1589 https://doi.org/10.1152/ajpheart.00278.2007
  2. Cavagna, M., O'Donnell, J.M., Sumbilla, C., Inesi, G., and Klein, M.G. (2000). Exogenous $Ca^{2+}$ATPase isoform effects on $Ca^{2+}$ transients of embryonic chicken and neonatal rat cardiac myocytes. J. Physiol. 528, 53-63 https://doi.org/10.1111/j.1469-7793.2000.00053.x
  3. Fabiato, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol. Cell. Physiol. 245, C1-14 https://doi.org/10.1152/ajpcell.1983.245.1.C1
  4. Fan, G.-C., Gregory, K.N., Zhao, W., Park, W.J., and Kranias, E.G. (2004). Regulation of myocardial function by histidine-rich, calcium- binding protein. Am. J. Physiol. Heart Circ. Physiol. 287, H1705-1711 https://doi.org/10.1152/ajpheart.01211.2003
  5. Gregory, K.N., Ginsburg, K.S., Bodi, I., Hahn, H., Marreez, Y.M.A., Song, Q., Padmanabhan, P.A., Mitton, B.A., Waggoner, J.R., Del Monte, F., et al. (2006). Histidine-rich Ca binding protein: a regulator of sarcoplasmic reticulum calcium sequestration and cardiac function. J. Mol. Cell. Cardiol. 40, 653-665 https://doi.org/10.1016/j.yjmcc.2006.02.003
  6. Grzeskowiak, R., Witt, H., Drungowski, M., Thermann, R., Hennig, S., Perrot, A., Osterziel, K.J., Klingbiel, D., Scheid, S., Spang, R., et al. (2003). Expression profiling of human idiopathic dilated cardiomyopathy. Cardiovasc. Res. 59, 400-411 https://doi.org/10.1016/S0008-6363(03)00426-7
  7. Honore, B., and Vorum, H. (2000). The CREC family, a novel family of multiple EF-hand, low-affinity $Ca^{2+}$-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett. 466, 11-18 https://doi.org/10.1016/S0014-5793(99)01780-9
  8. Jung, D.H., and Kim, D.H. (2004). Characterization of isoforms and genomic organization of mouse calumenin. Gene 327, 185-194 https://doi.org/10.1016/j.gene.2003.10.014
  9. Jung, D.H., Mo, S.H., and Kim, D.H. (2006). Calumenin, a multiple EF-hands $Ca^{2+}$-binding protein, interacts with ryanodine receptor- 1 in rabbit skeletal sarcoplasmic reticulum. Biochem. Biophys. Res. Commun. 343, 34-42 https://doi.org/10.1016/j.bbrc.2006.02.115
  10. Kim, E., Shin, D.W., Hong, C.S., Jeong, D., Kim, D.H., and Park, W.J. (2003). Increased $Ca^{2+}$ storage capacity in the sarcoplasmic reticulum by overexpression of HRC (histidine-rich $Ca^{2+}$ binding protein). Biochem. Biophys. Res. Commun. 300, 192-196 https://doi.org/10.1016/S0006-291X(02)02829-2
  11. Lee, E.H., Kim, D.H., and Allen, P.D. (2006). Interplay between intra- and extracellular calcium ions. Mol. Cells 21, 315-329
  12. Sato, Y., Ferguson, D.G., Sako, H., Dorn, G.W. 2nd., Kadambi, V.J., Yatani, A., Hoit, B.D., Walsh, R.A., and Kranias, E.G. (1998). Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28470-28477 https://doi.org/10.1074/jbc.273.43.28470
  13. Sumbilla, C., Cavagna, M., Zhong, L., Ma, H., Lewis, D., Farrance, I., and Inesi, G. (1999). Comparison of SERCA1 and SERCA2a expressed in COS-1 cells and cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 277, H2381-2391
  14. Yabe, D., Nakamura, T., Kanazawa, N., Tashiro, K., and Honjo, T. (1997). Calumenin, a $Ca^{2+}$-binding protein retained in the endoplasmic reticulum with a novel carboxyl-terminal sequence, HDEF. J. Biol. Chem. 272, 18232-18239 https://doi.org/10.1074/jbc.272.29.18232
  15. Zhang, L., Kelley, J., Schmeisser, G., Kobayashi, Y.M., and Jones, L.R. (1997). Complex Formation between junctin, triadin, calsequestrin, and the ryanodine receptor. J. Biol. Chem. 272, 23389-23397 https://doi.org/10.1074/jbc.272.37.23389