• Title/Summary/Keyword: Excitation test

Search Result 552, Processing Time 0.023 seconds

Random response analysis of Missile Guidance Structure by using Finite Element Method (유한요소 해석을 이용한 Missile Guidance Structure의 Random response analysis)

  • Kim, Jaeki;Nam, Kwangsik;choi, Jinkyu;Choi, Homin;Zhao, Shang;Yeom, Sang Hun;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2015
  • In the vibration test, Most of the test specifications is standardized methods of sinusoidal excitation. However, in accordance with the ability of the test equipment progress and developments of electronic technology, methods of random vibration test is standardized in the MIL standard. Therefore, in this study, we tried to analyze Missile Guidance Structure using a finite element analysis with ABAQUS 6.13 that is commercial program. First, Random response analysis is analyzed. Following analyzing the results, we wanted to find the model that is lightweight and resonance does not occur.

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

Absolute Evaluation Method to Obtain Ratio Error and Phase Displacement of Current Transformers (전류변성기의 비오차와 위상오차의 절대 평가 기술)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Koo, Kyung-Wan;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • We have developed an absolute evaluation method to obtain the ratio error and phase displacement of a current transformer (CT) without any precise standard CT by measuring four parameters in a CT equivalent circuit. The excitation admittance in the CT equivalent circuit can be obtained by employing standard resistors with negligible reactive component. The secondary leakage impedance in the CT equivalent circuit can be measured using a universal impedance bridge. The method was applied to CTs under test with the wide current ratios in the range of 5 A / 5 A - 5,000 A / 5 A and 5 A / 1 A - 5,000 A / 1 A. The ratio error and phase displacement of the CT under test obtained in this study are consistent with those measured at the national institute in Canada using the same CT under test within an expanded uncertainty (k = 2) in the overall current ratios.

A Practical Tuning Method of Dual-Input PSS and its Application to Large Power System (다중-입력 PSS의 실제적인 튜닝 방법과 대형 전력 시스템에의 적용)

  • Kim, Dong-Joon;Moon, Young-Hwan;Hur, Jin;Shin, Jeong-Hoon;Kim, Tae-Kyun;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.362-370
    • /
    • 2002
  • This paper describes the practical tuning method of dual-input PSS and its application to Muju P/P #2 with Proto PSS, which is based on DSP technology and uses both frequency and power. First, the model parameters of generator system used in this paper have been derived from the generator characteristic testing. Then, in the selection of PSS parameters, the Bode plot is plotted in order to tune the PSS's time constants which are able to compensate the phase lagging due to generator and excitation system. In addition, the eigenvalue analysis is also performed for determining a reliable PSS gain, $K_{s}$. Finally, the transient stability program has been utilized to verify the safe operation of Proto PSS against the predictable disturbances such as the AVR-step test and generator unloading test. In on-site test, the simulated results have been identically duplicated by implementing AVR step test in Muju P/P #2 with Proto PSS, which has the previously designed PSS parameters.s.

A Study on the Application for the Vibration Active Control by using a Voice call type LOA (보이스코일형 LOA의 진동능동제어 시스템에의 응용에 관한 연구)

  • Jang, S.M.;Jeong, S.S.;Seo, J.H.;Kim, H.G.;Park, H.C.;Moon, S.J.;Chung, J.A.;Park, C.I.;Chung, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.317-319
    • /
    • 1996
  • In this paper, an active vibration control system using a voice coil type linear oscillating actuator(LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements in the driving system, so it has lots of merits with respect to economics and maintenance. The general mathematical dynamic model to obtain the algorithm for the realization of vibration active control system is treated. Actually, the performance test of the control system using LOA is carried out on a steel test structure under sinusoidal and white noise excitation. From this test it is conformed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large structures will be studied.

  • PDF

The Study on Sensitivity Analysis of Domestic Road using PSD (PSD선도를 이용한 국내노면의 민감도 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Kim, Hyun-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.326-331
    • /
    • 2006
  • The durability of recent motors is longer than the past one because there are the rapid technique development of the automobile industry and the vehicle maintenance of users. And then the importance of the durability test due to vibration is increased from day to day. So full vehicle and parts companies accomplish the durability test using various methods. The most public test method among them is the reliable field test but it bring on higher cost and period of the development process. The durability test using MAST(multi axis simulation table) is a solution in order to improve the development process of automobiles. Generally its excitation source uses the optimized road profiles that are obtained by the road test of belgian road, country road, cobbleston road and so on instead of a real field but the interrelations and influences accordingly vehicle damage are considered by a field test between specific roads and real fields in the first place. Therefore this study, in order to accomplish a basic research for the durability test using the MAST, performed on the real field driving test at various domestic roads and the results which are analyzed by PSD(power spectrum density) are compared with relative sensitivity among the roads. Consequently they can present a basic material for generation of road profiles which is applied to the durability test using MAST.

  • PDF

Wind-rain-induced vibration test and analytical method of high-voltage transmission tower

  • Li, Hong-Nan;Tang, Shun-Yong;Yi, Ting-Hua
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.435-453
    • /
    • 2013
  • A new computational approach for the rain load on the transmission tower is presented to obtain the responses of system subjected to the wind and rain combined excitations. First of all, according to the similarity theory, the aeroelastic modeling of high-voltage transmission tower is introduced and two kinds of typical aeroelastic models of transmission towers are manufactured for the wind tunnel tests, which are the antelope horn tower and pole tower. And then, a formula for the pressure time history of rain loads on the tower structure is put forward. The dynamic response analyses and experiments for the two kinds of models are carried out under the wind-induced and wind-rain-induced actions with the uniform and turbulent flow. It has been shown that the results of wind-rain-induced responses are bigger than those of only wind-induced responses and the rain load influence on the transmission tower can't be neglected during the strong rainstorm. The results calculated by the proposed method have a good agreement with those by the wind tunnel test. In addition, the wind-rain-induced responses along and across the wind direction are in the same order of response magnitude of towers.

Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation (음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험)

  • Park, S.H.;Jeong, H.K.;Seo, S.H.;Jang, Y.S.;Yi, Y.M.;Cho, K.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

Experimental Measurement of Magnetic Properties of a Toroidal-type Bulk Electrical Steel using B-waveform Control (자속밀도 파형제어에 의한 토로이달 벌크 전기강의 자기특성 측정)

  • Eum, Young-Hwan;Koh, Chang-Seop;Hong, Sun-Ki;Shin, Pan-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.869-875
    • /
    • 2007
  • Magnetic properties of electrical steel are, in general. measured by using Epstein frame or single sheet tester (SST). These methods, however, require very strict regulation of a specimen in its size and shape. thus, can not be easily applied to various types of specimen. On the other hand, a ring-test method, which measures only the isotropic properties, can be easily applied to most cases because it requires a toroidal-type specimen of arbitrary size. This method, especially, is considered as an unique available method for a bulk-type specimen. In this paper, a ring-test method is developed, and applied to the measurement of magnetic properties of a bulk-type electrical steel with a toroidal-type specimen. In the measurement, the magnetic properties and iron losses are measured and compared with each other at the both sinusoidal magnetic flux density and sinusoidal magnetic field intensity conditions under 0.2Hz and 60Hz alternating magnetic fields excitation. Through experimental measurements, a sinusoidal magnetic flux density condition is proven appropriate for the measurement of magnetic properties, including iron loss characteristics, of electrical steels.

A Vibration Response Analysis of Steel Building Frame with K Shape Brace Vibrationally Controlled by Turbulent Flow Dampers sealed by Visco-elastic Material (점탄성물질 난류댐퍼를 이용한 K형 철골 브레이스 골조의 진동응답해석)

  • Lee, Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.61-68
    • /
    • 2006
  • In this thesis, a full-scale K shape damper test model was constructed in which a passive vibration control system. This passive vibration control system was incorporated with the use of a newly developed turbulent flow damper sealed by viscoelastic material. A series of tests and earthquake observation has been conducted in this test model. The purpose of the present thesis is to investigate the vibration response characteristics of the building and to verify the effectiveness of the vibration control system. By the static loading test, it was recognized that incorporation of the dampers had little influence on static horizontal stiffness of the building. Free vibration tests revealed that the dampers incorporated increased the damping ratio of the building up to 3 times compared with the undamped case. The effectiveness of the developed vibration control system was confirmed based on the excitation tests and earthquake response observation.

  • PDF