• Title/Summary/Keyword: Excitation force

Search Result 583, Processing Time 0.025 seconds

Improved dynamic model of the impact hammer (개선된 충격해머의 동역학적 모델)

  • Lim, Byoung-Duk;Park, Jung-Hyun;Heo, Joon-Hyeok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.372.1-372
    • /
    • 2002
  • Although impact hammer is widely used as a convenient excitation tool in structural modal testing, little is known about the dynamic charateristics of its impulse mechanism. Transmission of the impulsive force to the structure depends on the dynamic properties of the impact hammer as well as the stiffness of the tip. An improved dynamic model of the impact hammer is proposed in this study with numerical simulations based on this model. (omitted)

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.349.1-349
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR mount experimently. The MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and force excitation tests were performed. The dynamic property of the mount using MR fluid was compared with that of the mount using conventional oil. (omitted)

  • PDF

Rotordynamic Characteristics of High Pressure Multistage Pump (고압 다단펌프 축계 진동 특성 고찰)

  • Song, Ae Hee;Song, Jin Dae;Lim, Woo Seop;Yang, Bo Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.592-596
    • /
    • 2012
  • This paper presents numerical analysis result of rotor-bearing system of a multi-stage high pressure pump. Especially resonance possibility, stability and damping factor are estimated for a selected commercial multi-stage high pressure pump. The result shows that it is not easy to avoid resonance of rotor-bearing system against main excitation forces which are residual unbalance force and pressure pulsation. This makes damping effect be more important.

  • PDF

Aseismic Effectiveness of LR type Base Isolated System (LR형 지반분리계의 내진효과)

  • 정연경;예광일;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.231-238
    • /
    • 1997
  • Many methods have been proposed for achieving optimum performance of structures subjected to earthquake excitation. The conventional approach requires that structures passively resist earthquakes through a combination of strength, deformability, and energy absorption. Base isolation is a technique for mitigating the effects of earthquakes on structures through the introduction of flexibility and energy absorption capability. In this paper, a parametric study of effectiveness of isolation systems with various main structures' properties is carried out through the response spectrum analysis. It is shown that, most base isolators with its longer period and higher damping can significantly reduce the base shear force transmitted to the structures.

  • PDF

Global Bifurcations and Chaos in an Harmonically Excited and Undamped Circular Plate

  • Samoylenko, Sergey B.;Lee, Won-Kyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.140-144
    • /
    • 2004
  • Global bifurcations and chaos in modal interactions of an imperfect circular plate with one-to-one internal resonance are investigated. The case of primary resonance, in which an excitation frequency is near natural frequencies, is considered. The damping force is not included in the analysis. The Melnikov's method for heteroclinic orbits of the autonomous system was used to obtain the criteria for chaotic motion.

  • PDF

Optimization of LQR method for the active control of seismically excited structures

  • Moghaddasie, Behrang;Jalaeefar, Ali
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.243-261
    • /
    • 2019
  • This paper introduces an appropriate technique to estimate the weighting matrices used in the linear quadratic regulator (LQR) method for active structural control. For this purpose, a parameter is defined to regulate the relationship between the structural energy and control force. The optimum value of the regulating parameter, is determined for single degree of freedom (SDOF) systems under seismic excitations. In addition, the suggested technique is generalized for multiple degrees of freedom (MDOF) active control systems. Numerical examples demonstrate the robustness of the proposed method for controlled buildings under a wide range of seismic excitations.

Design of an Excitation System for Simulating Wind-Induced Response and Evaluating Wind-load Resistance Characteristics (건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계)

  • Park, Eun-Churn;Lee, Sung-Kyung;Min, Kyung-Won;Chun, Lan;Kang, Kyung-Soo;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.769-778
    • /
    • 2007
  • In this paper, excitation systems using linear mass shaker (LMS) and active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

Multi-Functional Probe Recording: Field-Induced Recording and Near-Field Optical Readout

  • Park, Kang-Ho;Kim, Jeong-Yong;Song, Ki-Bong;Lee, Sung-Q;Kim, Jun-Ho;Kim, Eun-Kyoung
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • We demonstrate a high-speed recording based on field-induced manipulation in combination with an optical reading of recorded bits on Au cluster films using the atomic force microscope (AFM) and the near-field scanning optical microscope (NSOM). We reproduced 50 nm-sized mounds by applying short electrical pulses to conducting tips in a non-contact mode as a writing process. The recorded marks were then optically read using bent fiber probes in a transmission mode. A strong enhancement of light transmission is attributed to the local surface plasmon excitation on the protruded dots.

  • PDF

Analysis of a Magnetic Field According to Eccentricity in Brushless DC M01 (BLDC 모터에서의 편심에 따른 자계특성 해석)

  • Jang, S.M.;Yoon, I.K.;Lee, S.H.;Choi, S.K.;Lee, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.706-708
    • /
    • 2002
  • Vibration, giving rise to acoustical noise, is an important index of motor performance. The unbalance force due to rotor eccentricity caused by manufacturing imprecision or bearing defects is one possible source of excitation to vibration. With the advent of new high-energy magnetic material together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper introduces two types of high-speed slotless permanent magnet (PM) machine for electro-mechanical battery and investigates unbalance force due to static eccentricity with finite element method.

  • PDF

Force-To-Rebalance Mode of a Resonator Gyro and Angular Rate Measurement Tests (공진 자이로의 재평형 모드 구현과 각속도 측정 실험)

  • Jin, Jaehyun;Kim, Dongguk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.563-569
    • /
    • 2014
  • This article focuses on a hemispherical resonator gyro driven by the Coriolis effect. A hemispherical shell, called a resonator, is maintained in the resonance state by amplitude control and phase locking control. Parametric excitation has been used to control the amplitude. For rate measurement mode or FTR mode, nodal points have been kept to an amplitude of zero. Angular rate measurement has been demonstrated by rotating a resonator. Frequency mismatch between two stiffness principal axes is a major cause of low performance: vibrating pattern drift and reduced control effectiveness. This mismatch has been reduced significantly by the addition of small mass. A negative spring effect, which lowers resonance frequencies, has been verified experimentally.