• Title/Summary/Keyword: Evolutionary pattern

Search Result 129, Processing Time 0.026 seconds

Disentangling Evolutionary Pattern and Haplotype Distribution of Starch Synthase III-1 (SSIIIb) in Korean Rice Collection

  • Bhagwat Nawade ;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.214-214
    • /
    • 2022
  • Soluble starch synthases (SSs) elongate α-glucans from ADP-Glc to the glucan nonreducing ends and play a critical role in synthesizing resistant starch in the rice. A total of 10 SSs isoforms were reported in rice, including granules-bound starch synthase I (GBSSI), GBSSII, starch synthase I (SSI), SSIIa (SSII-3), SSIIb (SSII-2), SSIIc (SSII-1), SSIIIa (SSIII-2), SSIIIb (SSIII-1), SSIVa (SSIV-1), and SSIVb (SSIV-2). SSIII proteins are involved in forming the B chain and elongating cluster filling chains in amylopectin metabolism. The functions of SSIIIb (SSIII-1) are less clear as compared to SSs. Here, we sought to shed light on the genetic diversity profiling of the SSIII-1 gene in 374 rice accessions composed of 54 wild-type accessions and 320 bred cultivars (temperate japonica, indica, tropical japonica, aus, aromatic, and admixture). In total, 17 haplotypes were identified in the SSIII-1 coding region of 320 bred cultivars, while 44 haplotypes were detected from 54 wild-type accessions. The genetic diversity indices revealed the most negative Tajima's D value in the temperate-japonica, followed by the wild type, while Tajima's D values in other ecotypes were positive, indicating balancing selection. Nucleotide diversity in the SSIII-1 region was highest in the wild group (0.0047) while lowest in temperate-japonica. Lower nucleotide diversity in the temperate-japonica is evidenced by the negative Tajima's D and suggested purifying selection. The fixation index (FST) revealed a very high level of gene flow (low FST) between the tropical-japonica and admixture groups (FST=-0.21) followed by admixture and wild groups (-0.04), indica and admixture groups (0.02), while low gene flow with higher FST estimates between the temperate-japonica and aus groups (0.72), tropical-japonica and aromatic groups (0.71), and temperate-japonica and admixture groups (0.52). Taken together, our study offers insights into haplotype diversity and evolutionary fingerprints of SSIII-1. It provides genomic information to increase the resistant starch content of cooked rice.

  • PDF

Spatial distribution patterns of old-growth forest of dioecious tree Torreya nucifera in rocky Gotjawal terrain of Jeju Island, South Korea

  • Shin, Sookyung;Lee, Sang Gil;Kang, Hyesoon
    • Journal of Ecology and Environment
    • /
    • v.41 no.8
    • /
    • pp.223-234
    • /
    • 2017
  • Background: Spatial structure of plants in a population reflects complex interactions of ecological and evolutionary processes. For dioecious plants, differences in reproduction cost between sexes and sizes might affect their spatial distribution. Abiotic heterogeneity may also affect adaptation activities, and result in a unique spatial structure of the population. Thus, we examined sex- and size-related spatial distributions of old-growth forest of dioecious tree Torreya nucifera in extremely heterogeneous Gotjawal terrain of Jeju Island, South Korea. Methods: We generated a database of location, sex, and size (DBH) of T. nucifera trees for each quadrat ($160{\times}300m$) in each of the three sites previously defined (quadrat A, B, C in Site I, II, and III, respectively). T. nucifera trees were categorized into eight groups based on sex (males vs. females), size (small vs. large trees), and sex by size (small vs. large males, and small vs. large females) for spatial point pattern analysis. Univariate and bivariate spatial analyses were conducted. Results: Univariate spatial analysis showed that spatial patterns of T. nucifera trees differed among the three quadrats. In quadrat A, individual trees showed random distribution at all scales regardless of sex and size groups. When assessing univariate patterns for sex by size groups in quadrat B, small males and small females were distributed randomly at all scales whereas large males and large females were clumped. All groups in quadrat C were clustered at short distances but the pattern changed as distance was increased. Bivariate spatial analyses testing the association between sex and size groups showed that spatial segregation occurred only in quadrat C. Males and females were spatially independent at all scales. However, after controlling for size, males and females were spatially separated. Conclusions: Diverse spatial patterns of T. nucifera trees across the three sites within the Torreya Forest imply that adaptive explanations are not sufficient for understanding spatial structure in this old-growth forest. If so, the role of Gotjawal terrain in terms of creating extremely diverse microhabitats and subsequently stochastic processes of survival and mortality of trees, both of which ultimately determine spatial patterns, needs to be further examined.

Analyses of Elementary School Students' Scientific Creativity in Cognitive Domain by Applying a Brain-Based Evolutionary Approach to Science Instruction (인지적 영역 중심의 뇌기반 진화적 접근법을 적용한 초등 과학 수업에서 학생들의 과학 창의성 분석)

  • Ok, Chanmi;Lim, Chae-Seong;Kim, Sung-Ha;Hong, Juneuy
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.4
    • /
    • pp.469-478
    • /
    • 2016
  • A brain-based evolutionary approach developed by reflecting the brain functions and authentic science is consisted of Affective, Behavioral, and Cognitive domains, and within each domain the processes of Diversifying, Evaluating, and Furthering are proceeded (ABC-DEF). Two core components of creativity of originality and usefulness are inherent in each step. So, this study analyzed scientific creativity with the originality and usefulness components in cognitive domain, which is composed of diversifying the meanings inherent in the results of observations or experiments (C-D), evaluating the meanings (C-E), and furthering (C-F) in learning of 'World of Plants' unit which includes two topics of 'Plants on Land' and 'Plants in Water and Special Environment'. A total of 20 fourth grade students at Y elementary school in Gyeonggi province participated in the study. The main results of this study are as follows. First, the scientific creativity in step C-D (Diversifying stage) was assessed according to the scientific creativity assessment formula. The scores of scientific creativity were quite different with topics and showed different pattern in the originality and usefulness components. Second, when the students compare and evaluate the values of each meaning (C-E stage), they weighed more on usefulness than originality, such as "because it is useful" or "because it solve many everyday problems". Third, the overall scores of scientific creativity in step C-F (Furthering stage), as compared with those of step C-D, were low and showed decrease in the average scores of originality from 9.8 to 7.5 points, whereas increase in the average scores of usefulness from 5.4 to 6.1 points. In conclusion, these results showed that, even though the levels were not so high, the students, as scientists, can exhibit the scientific creativity in the processes of diversifying, comparing and evaluating, and applying the meanings about the results obtained by observations or experiments. The specific and various strategies to help students express their potential scientific creativity more effectively need to be developed.

Hybrid Behavior Evolution Model Using Rule and Link Descriptors (규칙 구성자와 연결 구성자를 이용한 혼합형 행동 진화 모델)

  • Park, Sa Joon
    • Journal of Intelligence and Information Systems
    • /
    • v.12 no.3
    • /
    • pp.67-82
    • /
    • 2006
  • We propose the HBEM(Hybrid Behavior Evolution Model) composed of rule classification and evolutionary neural network using rule descriptor and link descriptor for evolutionary behavior of virtual robots. In our model, two levels of the knowledge of behaviors were represented. In the upper level, the representation was improved using rule and link descriptors together. And then in the lower level, behavior knowledge was represented in form of bit string and learned adapting their chromosomes by the genetic operators. A virtual robot was composed by the learned chromosome which had the best fitness. The composed virtual robot perceives the surrounding situations and they were classifying the pattern through rules and processing the result in neural network and behaving. To evaluate our proposed model, we developed HBES(Hybrid Behavior Evolution System) and adapted the problem of gathering food of the virtual robots. In the results of testing our system, the learning time was fewer than the evolution neural network of the condition which was same. And then, to evaluate the effect improving the fitness by the rules we respectively measured the fitness adapted or not about the chromosomes where the learning was completed. In the results of evaluating, if the rules were not adapted the fitness was lowered. It showed that our proposed model was better in the learning performance and more regular than the evolutionary neural network in the behavior evolution of the virtual robots.

  • PDF

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.

Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network and its Application to the Spirals and Sonar Pattern Classification Problems

  • Iyoda, Eduardo-Masato;Hajime Nobuhara;Kazuhiko Kawamoto;Shin′ichi Yoshida;Kaoru Hirota
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.158-161
    • /
    • 2003
  • A cascade structured neural network called Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network ($\sigma$$\pi$$_{t}$-CHNN) is Proposed. It is an extended version of the Sigma-Pi Cascaded extended Hybrid Neural Network ($\sigma$$\pi$-CHNN), where the classical multiplicative neuron ($\pi$-neuron) is replaced by the translated multiplicative ($\pi$$_{t}$-neuron) model. The learning algorithm of $\sigma$$\pi$$_{t}$-CHNN is composed of an evolutionary programming method, responsible for determining the network architecture, and of a Levenberg-Marquadt algorithm, responsible for tuning the weights of the network. The $\sigma$$\pi$$_{t}$-CHNN is evaluated in 2 pattern classification problems: the 2 spirals and the sonar problems. In the 2 spirals problem, $\sigma$$\pi$$_{t}$-CHNN can generate neural networks with 10% less hidden neurons than that in previous neural models. In the sonar problem, $\sigma$$\pi$$_{t}$-CHNN can find the optimal solution for the problem i.e., a network with no hidden neurons. These results confirm the expanded information processing capabilities of $\sigma$$\pi$$_{t}$-CHNN, when compared to previous neural network models. network models.

  • PDF

Genomic Analysis of miR-21-3p and Expression Pattern with Target Gene in Olive Flounder

  • Jo, Ara;Lee, Hee-Eun;Kim, Heui-Soo
    • Genomics & Informatics
    • /
    • v.15 no.3
    • /
    • pp.98-107
    • /
    • 2017
  • MicroRNAs (miRNAs) act as regulators of gene expression by binding to the 3' untranslated region (UTR) of target genes. They perform important biological functions in the various species. Among many miRNAs, miR-21-3p is known to serve vital functions in development and apoptosis in olive flounder. Using genomic and bioinformatic tools, evolutionary conservation of miR-21-3p was examined in various species, and expression pattern was analyzed in olive flounder. Conserved sequences (5'-CAGUCG-3') in numerous species were detected through the stem-loop structure of miR-21-3p. Thus, we analyzed target genes of miR-21-3p. Among them, 3' UTR region of PPIL2 gene indicated the highest binding affinity with miR-21-3p based on the minimum free energy value. The PPIL2 gene showed high expression levels in testis tissue of the olive flounder, whereas miR-21-3p showed rather ubiquitous expression patterns except in testis tissue, indicating that miR-21-3p seems to control the PPIL2 gene expression in a complementary repression manner in various tissues of olive flounder. Taken together, this current study contributes to infer the target gene candidates for the miR-21-3p using bioinformatics tools. Furthermore, our data offers important information on the relationship between miR-21-3p and target gene for further functional study.

Clonality Assay of Dysplastic Epithelial Lesions of the Stomach (위 이형성 상피 병변의 클론성에 대한 분자병리학적 연구)

  • Choi Ho Soo;Kim Mi Sook;Park Jae Woo;Park Chang Soo;Kim Young-Jin;Juhng Sang-Woo
    • Journal of Gastric Cancer
    • /
    • v.1 no.3
    • /
    • pp.129-135
    • /
    • 2001
  • Purpose: Dysplasia or flat adenoma of the stomach is regarded as a precancerous lesion. However, the frequency and the evolutionary process of malignant transformation of gastric dysplasia are still debated. In order to see whether the lesion was a monoclonal or a polyclonal proliferation, clonality was assayed by X-linked HUMARA polymorphism. Materials and Methods: DNA was extracted from the paraffin-embedded tissue of 16 consecutive cases of endoscopic biopsy, eight of which supplied both dysplastic and nondysplastic tissue for comparison. HUMARA was amplified by PCR with or without pretreatment with methylationsensitive restriction enzyme, HpaII. The amplification products were electrophoresed on polyacrylamide gel and silver-stained. Results: Among the 16 cases, 13 cases were informative and 3 cases noninformative. Of the 13 cases, one case showed skewed lyonization, rendering 12 cases to be analyzed further. A monoclonal band pattern was noted in 2 cases, and a polyclonal band pattern in 10 cases. A review of the histopathologies of the monoclonal and the polyclonal cases did not reveal features discriminating the two groups. Conclusion: These results suggest that gastric dysplasia is a disease entity heterogeneous in the genetic level, and many cases may be non-neoplastic.

  • PDF

Spatial Characteristics and Driving Forces of Cultivated Land Changes by Coupling Spatial Autocorrelation Model and Spatial-temporal Big Data

  • Hua, Wang;Yuxin, Zhu;Mengyu, Wang;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.767-785
    • /
    • 2021
  • With the rapid development of information technology, it is now possible to analyze the spatial patterns of cultivated land and its evolution by combining GIS, geostatistical analysis models and spatiotemporal big data for the dynamic monitoring and management of cultivated land resources. The spatial pattern of cultivated land and its evolutionary patterns in Luoyang City, China from 2009 to 2019 were analyzed using spatial autocorrelation and spatial autoregressive models on the basis of GIS technology. It was found that: (1) the area of cultivated land in Luoyang decreased then increased between 2009 and 2019, with an overall increase of 0.43% in 2019 compared to 2009, with cultivated land being dominant in the overall landscape of Luoyang; (2) cultivated land holdings in Luoyang are highly spatially autocorrelated, with the 'high-high'-type area being concentrated in the border area directly north and northeast of Luoyang, while the 'low-low'-type area is concentrated in the south and in the municipal area of Luoyang, and being heavily influenced by topography and urbanization. The expansion determined during the study period mainly took place in the Luoyang City, with most of it being transferred from the 'high-low'-type area; (3) elevation, slope and industrial output values from analysis of the bivariate spatial autocorrelation and spatial autoregressive models of the drivers all had significant effects on the amount of cultivated land holdings, with elevation having a positive effect, and slope and industrial output having a negative effect.

Demographics of Isolated Galaxies along the Hubble Sequence

  • Kim, Hong-Geun;Park, Jongwon;Seo, Seong-Woo;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.73.1-73.1
    • /
    • 2015
  • Isolated galaxies in low-density regions are significant in the sense that they are least affected by the hierarchical pattern of galaxy growth and interactions with perturbers at least for the last few Gyr. To form a comprehensive picture of the star formation history of isolated galaxies, we construct a catalog of isolated galaxies and their comparison sample in relatively denser environments. The galaxies are drawn from SDSS DR7 in the redshift range of 0.025 < z < 0.044. We performed visual inspection and classified their morphology following the Hubble classification scheme. We have investigated the color-magnitude diagram and found elliptical and unbarred spiral galaxies in isolated systems are relatively fainter and bluer than those in denser regions. For the spectroscopic study, we make use of the OSSY catalog (Oh et al. 2011). Our analysis on the absorption-line properties based on the comparison with stellar population models suggests that isolated elliptical galaxies are likely to be younger and metal poorer, while isolated Sc-type galaxies seem to have older luminosity-weighted ages, than their high-density counterpart. In addition, according to the BPT diagnostics, early-type galaxies among isolated galaxies are rather evenly classified into star forming, composite, Seyfert and LINER, whereas their comparisons are mainly populated in the LINER region. On the other hand, late-type galaxies do not show any prominent difference. We discuss the evolutionary histories of isolated galaxies in the context of the standard ${\Lambda}CDM$ cosmology.

  • PDF