Hybrid Behavior Evolution Model Using Rule and Link Descriptors

규칙 구성자와 연결 구성자를 이용한 혼합형 행동 진화 모델

  • 박사준 (대구한의대학교 모바일콘텐츠학부)
  • Published : 2006.09.30

Abstract

We propose the HBEM(Hybrid Behavior Evolution Model) composed of rule classification and evolutionary neural network using rule descriptor and link descriptor for evolutionary behavior of virtual robots. In our model, two levels of the knowledge of behaviors were represented. In the upper level, the representation was improved using rule and link descriptors together. And then in the lower level, behavior knowledge was represented in form of bit string and learned adapting their chromosomes by the genetic operators. A virtual robot was composed by the learned chromosome which had the best fitness. The composed virtual robot perceives the surrounding situations and they were classifying the pattern through rules and processing the result in neural network and behaving. To evaluate our proposed model, we developed HBES(Hybrid Behavior Evolution System) and adapted the problem of gathering food of the virtual robots. In the results of testing our system, the learning time was fewer than the evolution neural network of the condition which was same. And then, to evaluate the effect improving the fitness by the rules we respectively measured the fitness adapted or not about the chromosomes where the learning was completed. In the results of evaluating, if the rules were not adapted the fitness was lowered. It showed that our proposed model was better in the learning performance and more regular than the evolutionary neural network in the behavior evolution of the virtual robots.

가상 로봇의 행동 진화를 위해서 규칙 구성자와 연결 구성자를 구성하여 분류 규칙과 진화 신경망을 형성하는 혼합형 행동 진화 모델(Hybrid Behavior Evolution Model)을 제안한다. 본 모델에서는 행동 지식을 두 수준에서 표현하였다. 상위 수준에서는 규칙 구성자와 연결 구성자를 구성하여 표현력을 향상시켰다. 하위 수준에서는 행동 지식을 비트 스트링 형태의 염색체로 표현하여, 이들 염색체를 대상으로 유전자 연산을 적용하여 학습을 수행시켰다. 적합도가 최적인 염색체를 추출하여 가상 로봇을 구성하였다. 구성된 가상 로봇은 주변 상황을 인식하여 입력 정보와 규칙 정보를 이용하여 패턴을 분류하였고, 그 결과를 신경망에서 처리하여 행동하였다. 제안된 모델을 평가하기 위해서 HBES(Hybrid Behavior Evolution System)를 개발하여 가상 로봇의 먹이 수집 문제에 적용하였다. 제안한 시스템을 실험한 결과, 동일한 조건의 진화 신경망보다 학습 시간이 적게 소요되었다. 그리고, 규칙이 적합도 향상에 주는 영향을 평가하기 위해서, 학습이 완료된 염색체들에 대해서 규칙을 적용한 것과, 그렇지 않은 것을 각각 수행하여 적합도를 측정하였다. 그 결과, 규칙을 적용하지 않으면 적합도가 저하되는 것을 확인하였다. 제안된 모델은 가상 로봇의 행동 진화에 있어서 기존의 진화 신경망 방식 보다 학습 성능이 우수하고 규칙적인 행동을 수행하는 것을 확인하였다.

Keywords

References

  1. Arkin, R. C., "Motor Schema-Based Mobile Robot Navigation", The International Journal of Robotics Research, Vol.8, No.4(1989).
  2. Brooks, R. A., "A Robust Layered Control System for a Mobile Robot", IEEE Journal of Robotics and Automation, Vol.2, No.1 (1986), 14-23. https://doi.org/10.1109/JRA.1986.1087032
  3. Brooks, R. A., "A Hardware Retargetable Distributed Layered Architecture for Mobile Robot Contorl", Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC(1987), 106-110.
  4. Brooks, R. A., "Intelligence without Reason", Proceedings of 12th Int. Joint Conf. on Artificial Intelligence(1991), 569-595.
  5. Brooks, R. A., "Artificial Life and Real Robots", Proc. of the First Europian Conference on Artificial Life : Towards a Practice of Autonomous Systems, Morgan Kaufmann Publishers(1992), 3-10.
  6. Collins, R. J. and D. R. Jefferson, AntFarm : Towards Simulated Evolution Artificial Life II, Addison-Wesley, 1991.
  7. Collins, R. J., Studies in Artificial Evolution, PhD Thesis, Philosophy in Computer Science, University of California, Los Angeles, 1992.
  8. Koza, J. R., Genetic Programming : On the Programming of Computers by Means of Natural Selection, MIT Press. 1992.
  9. Kubica, J. and E. Rieffel, "Collaborating with a Genetic Programming System to Generate Modular Robotic Code", A joint meeting of the eleventh International Conference on Genetic Algorithms (ICGA- 2002) and the seventh Annual Genetic Programming Conference (GP-2002)(2002), 804-811.
  10. Lee, M., "Evolution of Behaviors in Autonomous Robot Using Artificial Neural Network and Genetic Algorithm", Journal of Information Science, Vol.155, No.1 (2003), 43-60. https://doi.org/10.1016/S0020-0255(03)00125-7
  11. Mataric, M. J., "Behavior-Based Control : Examples from Navigation, Learning, and Group Behavior", Journal of Experimental and Theoretical Artificial Intelligence, Special Issue on Software Architectures for Physical Agents, Vol.9, No.2(1997), 323-336.
  12. Pipe, A. G. and B. Carse, "Fuzzy Logic and the Pittsburgh Classifier System for Mobile Robot Control", In Proceedings of the 3rd Conference of the European Society for Fuzzy Logic & Technology (EUSFLAT)(2003), 120-125.
  13. Zhao, K. and J. Wang, "Multi-robot Cooperation and Competition with Genetic Programming", Proc. of Genetic Programming( EuroGP'2000)(2000), 804-811.