• 제목/요약/키워드: Evolutionary computation speed

검색결과 17건 처리시간 0.025초

퍼지 시스템과 진화연산을 이용한 DC 모터 속도제어 (A DC Motor Speed Control using Fuzzy System and Evolutionary Computation)

  • 황기현;문경준;이화석;김형수;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.652-654
    • /
    • 1995
  • This paper proposes a design of self-tuning fuzzy controller based on evolutionary computation. Optimal membership functions are round by using evolutionary computation. Genetic algorithms and evolution strategy are used for tuning of fuzzy membership function. A arbitrarily speed trajectories is selected to show the performance of the proposed methods. Simulation results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on evolutionary computation.

  • PDF

A Fuzzy Logic Controller for Speed Control of a DC Series Motor Using an Adaptive Evolutionary Computation

  • Hwang, Gi-Hyun;Hwang, Hyun-Joon;Kim, Dong-Wan;Park, June-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권1호
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, an Adaptive Evolutionary Computation(AEC) is proposed. AEC uses a genetic algorithm(GA) and an evolution strategy (ES) in an adaptive manner is order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and ES are adaptively modulated according to the fitness. AEC is used to design the membership functions and the scaling factors of fuzzy logic controller (FLC). To evaluate the performances of the proposed FLC, we make an experiment on FLC for the speed control of an actual DC series motor system with nonlinear characteristics. Experimental results show that the proposed controller has better performance than that of PD controller.

  • PDF

진화 연산을 이용한 DC 모터 퍼지 제어기 구현 (Implementation of Fuzzy Controller of DC Motor Using Evolutionary Computation)

  • 황기현;김형수;문경준;이화석;박준호;황창선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.189-191
    • /
    • 1995
  • This paper proposes a design of self-tuning fuzzy controller based on evolutionary computation. Optimal membership functions are found by using evolutionary computation. Genetic algorithms and evolution strategy are used for tuning of fuzzy membership function. An arbitrarily speed trajectory is selected to show the performance of the proposed methods. Experiment results show the good performance in the DC motor control system with the self-tuning fuzzy controller based on evolutionary computation.

  • PDF

Improvement of Evolutionary Computation of Genetic Algorithm using SVM

  • Cho, Byung-Sun;Han, So-Hee;Son, Sung-Han;Kim, Jin-Su;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1513-1516
    • /
    • 2003
  • Genetic algorithm is well known as a stochastic searching method. In this paper, a modified genetic algorithm using 'Suppor Vector Machines (SVM)' is proposed. SVM is used to reduce the number of calling the objective function which in turn accelerate the searching speed compared to the conventional GA.

  • PDF

경쟁 공진화 알고리듬에서 경쟁전략들의 비교 분석 (Comparison and Analysis of Competition Strategies in Competitive Coevolutionary Algorithms)

  • 김여근;김재윤
    • 대한산업공학회지
    • /
    • 제28권1호
    • /
    • pp.87-98
    • /
    • 2002
  • A competitive coevolutionary algorithm is a probabilistic search method that imitates coevolution process through evolutionary arms race. The algorithm has been used to solve adversarial problems. In the algorithms, the selection of competitors is needed to evaluate the fitness of an individual. The goal of this study is to compare and analyze several competition strategies in terms of solution quality, convergence speed, balance between competitive coevolving species, population diversity, etc. With two types of test-bed problems, game problems and solution-test problems, extensive experiments are carried out. In the game problems, sampling strategies based on fitness have a risk of providing bad solutions due to evolutionary unbalance between species. On the other hand, in the solution-test problems, evolutionary unbalance does not appear in any strategies and the strategies using information about competition results are efficient in solution quality. The experimental results indicate that the tournament competition can progress an evolutionary arms race and then is successful from the viewpoint of evolutionary computation.

데이터 그룹화를 이용한 상호진화연산 기반의 추천 시스템 (A Recommendation System Based-on Interactive Evolutionary Computation with Data Grouping)

  • 김현태;안창욱;안진웅
    • 제어로봇시스템학회논문지
    • /
    • 제17권8호
    • /
    • pp.739-746
    • /
    • 2011
  • Recently, recommender systems have been widely applied in E-commerce websites to help their customers find the items what they want. A recommender system should be able to provide users with useful information regarding their interests. The ability to immediately respond to the changes in user's preference is a valuable asset of recommender systems. This paper proposes a novel recommender system which aims to effectively adapt and respond to the immediate changes in user's preference. The proposed system combines IEC (Interactive Evolutionary Computation) with a content-based filtering method and also employs data grouping in order to improve time efficiency. Experiments show that the proposed system makes acceptable recommendations while ensuring quality and speed. From a comparative experimental study with an existing recommender system which uses the content-based filtering, it is revealed that the proposed system produces more reliable recommendations and adaptively responds to the changes in any given condition. It denotes that the proposed approach can be an alternative to resolve limitations (e.g., over-specialization and sparse problems) of the existing methods.

Optimal fin planting of splayed multiple cross-sectional pin fin heat sinks using a strength pareto evolutionary algorithm 2

  • Ramphueiphad, Sanchai;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.31-42
    • /
    • 2021
  • This research aims to demonstrate the optimal geometrical design of splayed multiple cross-sectional pin fin heat sinks (SMCSPFHS), which are a type of side-inlet-side-outlet heat sink (SISOHS). The optimiser strength Pareto evolutionary algorithm2 (SPEA2)is employed to explore a set of Pareto optimalsolutions. Objective functions are the fan pumping power and junction temperature. Function evaluations can be accomplished using computational fluid dynamics(CFD) analysis. Design variablesinclude pin cross-sectional areas, the number of fins, fin pitch, thickness of heatsink base, inlet air speed, fin heights, and fin orientations with respect to the base. Design constraints are defined in such a way as to make a heat sink usable and easy to manufacture. The optimum results obtained from SPEA2 are compared with the straight pin fin design results obtained from hybrid population-based incremental learning and differential evolution (PBIL-DE), SPEA2, and an unrestricted population size evolutionary multiobjective optimisation algorithm (UPSEMOA). The results indicate that the splayed pin-fin design using SPEA2 issuperiorto those reported in the literature.

진화 시스템을 위한 유전자 알고리즘 프로세서의 구현 (Implementation of an Adaptive Genetic Algorithm Processor for Evolvable Hardware)

  • 정석우;김현식;김동순;정덕진
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권4호
    • /
    • pp.265-276
    • /
    • 2004
  • Genetic Algorithm(GA), that is shown stable performance to find an optimal solution, has been used as a method of solving large-scaled optimization problems with complex constraints in various applications. Since it takes so much time to execute a long computation process for iterative evolution and adaptation. In this paper, a hardware-based adaptive GA was proposed to reduce the serious computation time of the evolutionary process and to improve the accuracy of convergence to optimal solution. The proposed GA, based on steady-state model among continuos generation model, performs an adaptive mutation process with consideration of the evolution flow and the population diversity. The drawback of the GA, premature convergence, was solved by the proposed adaptation. The Performance improvement of convergence accuracy for some kinds of problem and condition reached to 5-100% with equivalent convergence speed to high-speed algorithm. The proposed adaptive GAP(Genetic Algorithm Processor) was implemented on FPGA device Xilinx XCV2000E of EHW board for face recognition.

프랙탈 영상 압축의 진화적인 계산에 관한 연구 (A Study on Evolutionary Computation of Fractal Image Compression)

  • 유환영;최봉한
    • 한국정보처리학회논문지
    • /
    • 제7권2호
    • /
    • pp.365-372
    • /
    • 2000
  • 프랙탈 영상 압축(Fractral Image Compression:FIC)의 진화 계산(Evolution Computation)을 이용한 영상 분할(Image Partition)을 소개한다. 프랙탈 영상 압축에서 지역(Ranges)의 영상 분할은 꼭 필요하다[1]. 프랙탈 영상 압축은 쉽고 빠르게 복원된다는 장점을 갖는 데 비해 반복적인 프랙탈 변환의 적용으로 많은 계산량을 필요로 한다는 단점을 가지고 있다. 위와 같은 문제점을 해결하기 위한 방법으로 영상 분할을 하는데 있어 진화 계산을 적용하는 것에 대해 제안한다. 치역 영상(Ranges Image)은 작은 사각(Square) 영상 블록들의 결합된 집합으로 구성할 수 있다. 모집단을 구성하는 하나의 $N_p$는 분할되어진 하나의 코드들이다. 진화 계산에서 각각의 구성은 두 개의 이웃하는 치역은 제외하고 그들의 부모(Parent)로부터 분할을 상속받은 자식 $\sigma$를 생성한다. 자손들의 최적의 영상은 콜라주 정리(Collage Theorem)에 기초를 둔 다음 세대 모집단을 위해 선택되어지고 처리된다. 최적의 영상은 영상 데이터에 포함된 중복성을 포함함으로서 적은 저장 공간을 차지하고 속도 문제에 있어서 효율적이고 영상의 화질에 있어서 다른 부호화를 사용한 기법보다 우수한 성능을 갖는다. 멀티미디어 영상 처리(Multimedia Image Processing)의 진화 계산을 이용한 프렉탈 영상 압축은 영상의 복원과 영상의 질, 고 압축률을 요하는 동영상의 적용등의 많은 분야에 적용된다.

  • PDF

An Optimization Algorithm with Novel Flexible Grid: Applications to Parameter Decision in LS-SVM

  • Gao, Weishang;Shao, Cheng;Gao, Qin
    • Journal of Computing Science and Engineering
    • /
    • 제9권2호
    • /
    • pp.39-50
    • /
    • 2015
  • Genetic algorithm (GA) and particle swarm optimization (PSO) are two excellent approaches to multimodal optimization problems. However, slow convergence or premature convergence readily occurs because of inappropriate and inflexible evolution. In this paper, a novel optimization algorithm with a flexible grid optimization (FGO) is suggested to provide adaptive trade-off between exploration and exploitation according to the specific objective function. Meanwhile, a uniform agents array with adaptive scale is distributed on the gird to speed up the calculation. In addition, a dominance centroid and a fitness center are proposed to efficiently determine the potential guides when the population size varies dynamically. Two types of subregion division strategies are designed to enhance evolutionary diversity and convergence, respectively. By examining the performance on four benchmark functions, FGO is found to be competitive with or even superior to several other popular algorithms in terms of both effectiveness and efficiency, tending to reach the global optimum earlier. Moreover, FGO is evaluated by applying it to a parameter decision in a least squares support vector machine (LS-SVM) to verify its practical competence.