유비쿼터스 네트웍은 다양한 프로토콜을 사용하는 많은 디바이스로 구성되며 상호간의 유연한 연동을 필요로 한다. 본 논문에서는 유비쿼터스 네트웍 환경에서 디바이스 상호간의 신뢰성 있는 통신을 지원하기 위한 계층적 이벤트 서비스와 이를 위한 다중 이벤트를 제안한다. 본 논문에서 제안된 이벤트 서비스는 다양한 통신 방법을 지원하기 위해 물리적인 위치 및 논리적인 위치에 따라 디바이스를 분류하였으며 분산 네트웍 환경에서 나타나는 이벤트 전송의 중복을 제거하여 네트웍 부하를 줄이며 이벤트 전송 과정에서 발생 가능한 오류에 대하여 신뢰성있는 처리를 보장하도록 설계 구현되었다. 제안된 이벤트 서비스는 홈 네트웍 사례 연구를 통하여 직접 구현되었으며 성능을 평가하였다.
본 논문에서는 복합 이벤트 처리를 적용하여 비즈니스 활동 분석(BAM)을 위한 이벤트 분석 방안을 제안한다. 이는 프로세스 관리자가 프로세스가 종료되기 이전에 발생 가능한 위험을 감지하고 모니터링하기 위하여 실시간에 진행되는 이벤트에 대하여 조기 경보를 제공하기 위하여 개발되었다. 본 연구에서는 의미 있는 위험을 가지는 이벤트를 추출하는, 프로세스 기반의 이벤트 모니터링 과정을 제시하였다. 복합 이벤트 패턴은 과거 누적된 이벤트 로그를 바탕으로 정의되며, 이벤트의 위험도는 그 패턴들에 기반하여 평가된다. 제안된 방법론은 홈쇼핑업체의 서비스 프로세스의 예를 이용하여 설명한다.
When the negative event is published, the company tends to go through the negative impact on the firm performance. Especially, with the SNS, the negative event is instantly spread on indefinite region so the impact seems bigger than the period before the SNS media appearance. It seems that everyone considers the SNS media impact on the firm performance quite big. However, there has been no empirical study on the impact comparison on the firm performance between pre and post SNS media occurrence periods. This study tries to empirically compare the impact of the negative event on the firm performance between pre and post SNS media appearance. Our study starts fromthe basic but not verified question; Does really the negative event have more negative impact in the post-SNS-occurrence period than in the pre-SNS-occurrence period? In order to examine the impact of the negative publicity on firm performance in two eras, pre and post SNS media appearance, we used CAR (Cumulative Abnormal Resturns) model. By using this model, we could verify the statistical significance of cumulative abnormal returns in market between before and after the events. For event samples, we focused on food manufacturers and collected the negative events from 1991 to 2003 for pre-SNS occurrence period, and from 2010 to 2013 for post-SNS occurrence period. Based on the listed food companies at KOSPI, we researched Naver News Library (newslibrary.naver.com) and Naver News (news.naver.com) for all the individual negative events published for both periods. Firm returns data were collected from TS 2000 (KOCO Info) and market portfolio data were collected from KRX Exchange. Through our empirical analysis, our finding is interesting to note that the type of events differently influences on the firm performance. With the SNS, the health-related events have influence on the firm performance 'after the event day' whereas the company behavior trust events have influence 'before the event day'. Our findings have implications for management. When a negative event directly related to or threatening customers or their life such as health, it is crucial to fix up the situation right after the event occurs. On the other hand, when a negative event is not publicly available information such as company behavior trust, it is important for marketers to strengthen the firms' trust reputation and control the bad WOM before the event.
사망과 같은 종말 사건은 중간 사건을 중도절단 시킬 수 있지만 재발과 같은 중간 사건은 종말 사건을 중도절단 시킬 수 없는 자료를 준경쟁위험 자료라고 하는데 의학 및 보건, 역학 분야에서는 이와 같은 자료를 자주 접하게 된다. 본 논문에서는 질병-사망 모형에 포함된 세 가지 전이 시간이 모두 구간중도절단된 준경쟁위험 자료를 분석하기 위해 정규 프레일티를 가진 와이블 회귀모형을 제안하였다. 각 개체는 중간 사건과 종말 사건의 발생 여부에 따라 다섯 가지 유형으로 구분되는데 유형별로 조건부 우도함수를 유도하였다. 조정중요표본추출법을 써서 주변 우도함수를 유도한 후 반복의사뉴톤 알고리즘을 써서 최적 추정량을 얻었다. 제안한 추정 방법의 소표본 성질을 살펴보기 위해 모의실험을 수행하였으며 또한 제안한 추정 방법을 Personnes Agées Quid (PAQUID) 자료에 적용하였다.
본 연구는 간헐 수문사상인 시간강수계열의 구조적 특성을 고찰하여 강수발생의 군집성을 고려한 강수발생과정에 대한 추계학적 모의발생 모형을 개발한 것이다. 먼저 강수사상의 발생패턴을 기술하기 위해 Poisson 군집과정을 사용하였고, 이 과정에서 군집간의 시간과 군집내의 사상 수는 지수분포로 기술하였다. 둘째로 사상의 지속기간과 군집내에서 사상간의 시간은 음대수혼합분포로 기술하였다. 마지막으로 이상과 같은 시간강수사상의 발생패턴과 사상기간내의 강수의 종속구조를 구명하기 위해 서울을 대상으로 하여 실적강수자료를 분석하였다. Monte Carlo 모의결과는 모형이 강수발생의 계절적 패턴, 사상특성의 주변 및 조건부 분포를 잘 재현하고 있음을 보여주었다.
운전자가 모바일기기를 사용하여 직접 교통 정보를 제공하는 크라우드 소싱을 활용하여 교통 문제를 해결하려는 연구들이 진행 중이다. 크라우드 소싱을 통해 수집된 데이터를 교통 이벤트 검출에 사용한다면 관련된 데이터를 수집하는 작업이 줄어들어 시간 비용이 낮아지고 정확도는 높아지는 장점이 있다. 본 논문에서는 크라우드 소싱을 활용하여 교통과 관련된 데이터를 수집하고, 이를 통해 교통에 영향을 미치는 이벤트를 검출하는 기법을 제안한다. 제안하는 기법은 대용량 데이터 처리를 위해 기계 학습 알고리즘을 사용하여 수집된 데이터의 이벤트 유형을 판별한다. 또한, 이벤트가 발생된 위치를 추출하기 위하여 수집된 데이터에서 위치를 나타내는 키워드를 추출하고 키워드의 행정구역을 반환한다. 이를 통해 기존 제공되는 위치 정보에서 광범위하게 정의된 위치나 잘못된 위치 정보를 해결할 수 있다. 제안하는 기법의 타당성을 입증하기 위해 다양한 성능 평가를 수행한다.
사물인터넷 환경에서는 센서로부터의 이벤트 데이터가 시간의 흐름에 따라 지속적으로 보고된다. 이러한 추세로 입수되는 이벤트 데이터는 무한정 쌓이게 되므로 데이터의 효율적인 분석과 관리를 위한 방안이 필요하다. 본 연구에서는 지속적으로 보고되어 유입되는 센서로부터의 이벤트 데이터에 대하여 효과적인 선택과 활용을 뒷받침 할 수 있도록 하는 데이터 스트림 분할 방안을 제안하였다. 분석 처리를 시작할 지점을 식별하기 위한 식별자를 선정하도록 하였다. 이러한 식별자의 역할을 존치시킴으로써 분석할 대상을 명확하게 할 수 있으며 데이터 처리량을 감소시킬 수 있다. 본 연구에서 제안하는 스트림 분할을 위한 식별자는 각 스트림의 이벤트 발생을 기준으로 하기에 의미 중심의 데이터 스트림 분할 방안이라고 할 수 있다. 스트림 처리에서의 식별자의 존재는 대용량의 지속적인 데이터 유입환경에서 효율성을 제공하고 비용을 저감하는 측면에서 유용하다고 할 수 있다.
웹 크롤링 데이터를 이용한 실시간 시스템은 원격지의 데이터와 동일한 데이터베이스의 데이터를 사용자에게 제공해야 하며, 이를 위해서 웹 크롤러는 원격지 데이터의 변경 여부를 확인하기 위해 원격 서버에 반복적인 HTTP(HyperText Transfer Protocol) 요청을 수행해야 한다. 이 과정은 크롤링 서버와 원격 서버의 네트워크 부하를 일으키며 과도한 트래픽 발생 등의 문제의 원인이 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 사용자 이벤트를 기반으로 크롤링 서버의 데이터와 다중 원격지 데이터와의 동일성을 유지하는 신뢰성을 확보함과 동시에 네트워크의 과부하를 줄일 수 있는 실시간 웹 크롤링 기법을 제안한다. 제안된 방법은 단위 데이터와 목록 데이터를 요청하는 이벤트를 기반으로 크롤링 프로세스를 수행한다. 실험 결과, 제안된 방법은 기존 웹 크롤러에서의 네크워크 트래픽 과부하를 줄이면서 데이터의 신뢰성을 확보할 수 있음을 확인하였다. 향후에는 이벤트 기반 크롤링과 시간 기반 크롤링에 대한 융합에 대한 연구가 필요하다.
As the Internet of Things evolves, various IoT services are provided. IFTTT is an abbreviation for If This Then That and refers to a service that links different web-based services. This paper proposes a system that generates and manages rules that combine the possibility of IFTTT service and the real-time event processing according to the concept of IoT service. Conventional database-based data processing methods are burdened to process a lot of data of IoT devices coming in real-time. The IoT device's data can be classified into formal data such as the amount of power, temperature value and position information, and informal data such as video or image data. Thus, this system classifies the data stream of IoT devices coming in real-time using the CEP engine Esper into a file signature table, classifies the formal/informal data, and shows the condition of the device data defined by the user and the service to be provided by applying the service.
PSA(Probabilistic Safety Assessment) methodology is widely used on assessing the safety of Nuclear Power Plants(NPPs) quantitatively in the domestic nuclear field. Initiating event frequencies are absolutely needed to conduct PSA, and they considerably affect PSA results. There is no domestic database where domestic trip event cases are reflected, so they are used to assess the safety of NPPs that are from the foreign database. In this paper, operating experience data from the Korean NPPs was collected and analyzed for the trip event cases, which are necessary to determine the initiating events and their frequencies. Korean NPPs have experienced five of 16 initiating events, which we LOFW. LOCV, LOCCW, LOOP and GTRN as a result of analyzing the trip event cases. Initiating frequencies based on the domestic trip event cases are analyzed, and they are similar to that from the foreign database.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.