• 제목/요약/키워드: Evaporation and condensation

검색결과 150건 처리시간 0.026초

연소조건에서 중금속 염화물의 휘발 및 유독성 제어 (Volatilization and Toxicity Control of Heavy Metal Chlorides under Combustion Conditions)

  • 서용칠
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.175-182
    • /
    • 1993
  • Volatilization of toxic heavy metals, especially, metal chlorides at elevated temperatures in oxidation conditions was observed using a thermogravimetric furnace since such metal chlorides used to be a cause for the disease of industrial workers by their toxicity and high volatile extent. Most of tested metal chloride compounds were evaporated or decomposed into gas phase at elevated temperatures ranged from 200~90$0^{\circ}C$, while CrCl$_3$ and NiC1$_2$became stable with converting into oxide forms. A kinetic model for evaporation/condensation could predict maximum evaporation flux and the calculated values were compared with real evaporation flux. The ratio of two fluxes could be explained as the fraction of impinging gas molecules to the condensing surface( $\alpha$ ) and obtained in the range of 10$^{-3}$ ~10$^{-9}$ for the experimented toxic heavy metal chlorides. This ratio might be used to define the volatile extent or toxicity of such toxic metal compounds. The schemes to avoid volatilization of toxic heavy metals Into the atmosphere were suggested as follows ; 1 ) controlling the compositions of metals and Chlorine produced substances( such as PVC ) in the treated materials using a reverse estimation from regulatory limit and characteristics of a processing facility, 2) Installation of wet type devices such as a scrubber for condensing the metal compounds.

  • PDF

단열 모세관내 R600a의 유동 특성 (Flow Characteristics of R600a in an Adiabatic Capillary Tube)

  • 구학근
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.449-454
    • /
    • 2010
  • 본 논문은 균질유동모델을 적용하여 단열 모세관내 R600a의 유동 특성을 이론적으로 조사하였다. 이 모델은 시뮬레이션 해석에 필요한 기본적인 질량, 에너지, 운동량 방정식에 근거하고 있다. 또한 2개의 마찰인자와 점성계수모델을 이용하여 유동특성을 조사하였다. R600a의 열역학 및 전달 물성치는 EES 물성치 코드를 이용하여 계산하였다. 작동변수들에 대한 기초 설계자료를 제공하고자 단열 모세관내 R600a의 유동 특성을 분석하였다. 본 연구의 작동변수에는 응축온도, 증발온도, 과냉각도, 모세관의 직경이 있다. 주요 결과를 요약하면 다음과 같다. R600a용 단열 모세관내 응축온도, 증발온도, 과냉각도, 관직경은 모세관 전체길이에 영향을 준다. 즉 R600a용 모세관 전체길이는 식(15)와 같은 상관식으로 나타낸다.

순산소 전로의 증기드럼 내의 3차원 열 유동 해석모델 개발 (Development of Three-dimensional Thermo-fluid Numerical Model for Steam Drum of a Basic Oxygen Furnace)

  • 정수진;문성준;장원준;고순탁;곽호택
    • Korean Chemical Engineering Research
    • /
    • 제54권4호
    • /
    • pp.479-486
    • /
    • 2016
  • 순산소 전로 후드의 일산화탄소와 열회수를 위해서는 고효율의 증기를 발생시키는 증기드럼의 장착이 필요하다. 그러나 제선 제강공정에서 증기발생은 간헐적이거나 주기적인 산소 취입공정기간에 제한적이다. 따라서, 증기드럼은 전로의 주기에 따른 산소의 취련기간 동안 효율적으로 증기를 발생시키도록 최적 설계되어야 한다. 따라서 본 연구에서는 다양한 운전조건 및 기하학적 형상변화가 증기드럼 내의 열유동 특성과 성능에 미치는 효과를 예측할 수 있는 3차원 전산유체역학 모델을 제안하였다. 본 모델은 유체유동 및 열전달 뿐만 아니라 계면유동에서의 증발 및 응축을 유한체적법을 사용하여 고려하였다. 본 모델의 예측성능을 검증하기 위하여 실험에서 구한 증기발생량과 비교하였으며 3.2%의 상대오차를 보였다.

Installation for Preparing of Nanopowders by Target Evaporation with Pulsed Electron Beam

  • Sokovnin S. Yu.;Kotov Yu. A.;Rhee C. K.
    • 한국분말재료학회지
    • /
    • 제12권3호
    • /
    • pp.167-173
    • /
    • 2005
  • Production of weakly agglomerated nanopowders with the characteristic size of about 10 nm and a narrow particle size distribution is still a topical problem especially if the matter is an acceptable output (>50 g/hour), a high purity of the final product, and a low (energy consumption. The available experience and literature data show that the most promising approach to production of such powders is the evaporation-condensation method, which has a set of means for heating of the target. From this viewpoint the use of pulsed electron accelerators for production of nanopowders is preferable since they allow a relatively simple adjustment of the energy, the pulse length, and the pulse repetition rate. The use of a pulsed electron accelerator provides the following opportunities: a high-purity product; only the target and the working gas will interact and their purity can be controlled; evaporation products will be removed from the irradiation zone between pulses; as a result, the electron energy will be used more efficiently; adjustment of the particle size distribution and the characteristic size of particles by changing the pulse energy and the irradiated area. Considering the obtained results, we developed a design and made an installation for production of nanopowders, which is based on a hollow-cathode pulsed gas-filled diode. The use of a hollow-cathode gas-filled diode allows producing and utilizing an electron beam in a single chamber. The emission modulation in the hollow cathode will allow forming an electron beam 5 to 100 ms long. This will ensure an exact selection of the beam energy. By now we have completed the design work, manufactured units, equipped the installation, and began putting the installation into operation. A small amount of nanopowders has been produced.

디젤 극미세입자 개수 농도 측정시 Volatile Particle 생성을 억제할 수 있는 희석방법에 관한 실험적 연구 (An Experimental Study of Dilution Methods for Preventing Volatile Particle Generation during Measurement of Diesel Particle Number Concentration)

  • 임태호;김홍석;조형문;이진욱;정용일;전흥신
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.67-73
    • /
    • 2009
  • Recently, Europe decided to start the regulation of diesel engine nanoparticles because of its well known adverse health effects. The diesel nanoparticles can be classified as solid carbon particles and volatile particles. The volatile particles generates during dilution process by condensation of gas phase volatile compounds such as hydrocarbon. The new nanoparticle regulation considers only solid particles because of difficulty of measurement of volatile particles. The aim of this study is to suggest a proper dilution method that prevent the volatile particle generation. As a result, it is found that the $1^{st}$ dilution air temperature should be above $120^{\circ}C$ in order to prevent volatile particle generation effectively. It is also found that the volatile particles can be removed effectively in the evaporation tube by the increase of evaporation tube temperature. But when exhaust gas is hot enough (>$190^{\circ}C$, in this study) and it is diluted in the first diluter with high temperature air (>$120^{\circ}C$), removal phenomenon of volatile particles by increasing of evaporation tube temperature can not be seen. It means that there are no volatile particles in the diluted exhaust gas. Additionally, dilution ratio is not an important factor for volatile particle generation compared with dilution air temperature or evaporation tube temperature.

이슬점 응축 현상을 이용한 오일 내 수분함량 측정에 관한 실험적 연구 (An Experimental Study on the Measurement of Water Content in an Lubricating Oil by Implementing a Dew-point Condensation Sensor)

  • 공호성;윤의성;한흥구;김학열
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.130-136
    • /
    • 2004
  • Presence of water in the lubricating oils could be one of the first indicators of potentially expensive and possibly catastrophic failure of the machine as it may cause displace the oil films to prevent the lubrication function of the oil or chemically react with many oil additives resulting in the oil degradation. In order to detect water content quantitatively in lubricating oils many methods and sensors has been developed. Among these, capacitive sensors including sensitive layer, whose dielectric factor changes according to the water content absorbed in the layer, are proposed mainly in the market. But these sensors are not sensitive to a high water content. Besides, the absorbing layer soils in time. In this work, an evaporation of water moisture from oil into air volume above lubricant surface and condensation of water vapor at a cooling surface was used to measure water content quantitatively in an lubricating oil. Laboratory test results of a prototype sensor were presented. Test results showed that the proposed method could be avaliable to measure a low levels of oil moisture.

  • PDF

Thermal-hydraulic behaviors of a wet scrubber filtered containment venting system in 1000 MWe PWR with two venting strategies for long-term operation

  • Dong, Shichang;Zhou, Xiafeng;Yang, Jun
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1396-1408
    • /
    • 2020
  • Filtered containment venting system (FCVS) is one of the severe accident mitigation systems designed to release containment pressurization to maintain its integrity. The thermal-hydraulic behaviors in FCVSs are important since they affect the operation characteristics of the FCVS. In this study, a representative FCVS was modeled by RELAP5/Mod3.3 code, and the Station BlackOut (SBO) was chosen as an accident scenario. The thermal-hydraulic behaviors of an FCVS during long-term operation with two venting strategies (open-and-close strategy, open-and-non-close strategy) and the sensitivity analysis of important parameters were investigated. The results show that the FCVS can operate up to 250 h with a periodic open-and-close strategy during an SBO. Under the combined effects of steam condensation and water evaporation, the solution inventory in the FCVS increases during the venting phase and decreases during the intermission phase, showing a periodic pattern. Under this condition, the appropriate initial water level is 3-4 m; however, it should be adjusted according to the environment temperature. The FCVS can accommodate a decay heat power of 150-260 kW and may need to feed water for a higher decay heat power or drain water for a lower decay heat power during the late phase. The FCVS can function within an opening pressure range from 450 kPa to 500 kPa and a closing pressure range between 250 kPa and 350 kPa. When the open-and-non-close strategy is adopted, the solution inventory increases quickly in the early venting phase due to steam condensation and then decreases gradually due to the evaporation of water; drying-up may occur in the late venting phase. Decreasing the venting pipe diameter and increasing the initial water level can mitigate the evaporation of the scrubbing solution. These results are expected to provide useful references for the design and engineering application of FCVSs.

Au-conjugate 면역화학 진단용 금 나노입자 제조 (Fabrication of Au Nanoparticle for Au-conjugate Immuno Chemistry Probe)

  • 박성태;이광민
    • 한국재료학회지
    • /
    • 제13권8호
    • /
    • pp.550-554
    • /
    • 2003
  • Current nanogold cluster synthesized by chemical routine with 11 or 55 atoms of gold has been widely used for immuno chemistry probe as a form of nanocluster conjugated with biomolecules. It would be an undeveloped region that the 1 nm size of nanogold could be made by materials engineering processing. Therefore, objective of this study is to minimize the size of gold nanocluster as a function of operating temperature and chamber pressure in inert gas condensation (IGC) processing. Evaporation temperature was controlled by input current from 50 A to 65 A. Chamber pressure was controlled by argon gas with a range of 0.05 to 2 torr. The gold nanocluster by IGC was evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The gold nanocluster for TEM analysis was directly sampled with special in-situ method during the processing. Atomic force microscopy (AFM) was used to observe 3-D nanogold layer surfaces on a slide glass for the following biomolecule conjugation step. The size of gold nanoclusters had a close relationship with the processing condition such as evaporation temperature and chamber pressure. The approximately 1 nm size of nanogold was obtained at the processing condition for 1 torr at $1124 ^{\circ}C$.