DOI QR코드

DOI QR Code

Fabrication of Au Nanoparticle for Au-conjugate Immuno Chemistry Probe

Au-conjugate 면역화학 진단용 금 나노입자 제조

  • Park, Sung-Tae (Department of Materials Science Engineering and Nano Technology Research Center Chonnam National University) ;
  • Lee, Kwang-Min (Department of Materials Science Engineering and Nano Technology Research Center Chonnam National University)
  • 박성태 (전남대학교 신소재공학부 및 나노기술연구센터) ;
  • 이광민 (전남대학교 신소재공학부 및 나노기술연구센터)
  • Published : 2003.08.01

Abstract

Current nanogold cluster synthesized by chemical routine with 11 or 55 atoms of gold has been widely used for immuno chemistry probe as a form of nanocluster conjugated with biomolecules. It would be an undeveloped region that the 1 nm size of nanogold could be made by materials engineering processing. Therefore, objective of this study is to minimize the size of gold nanocluster as a function of operating temperature and chamber pressure in inert gas condensation (IGC) processing. Evaporation temperature was controlled by input current from 50 A to 65 A. Chamber pressure was controlled by argon gas with a range of 0.05 to 2 torr. The gold nanocluster by IGC was evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The gold nanocluster for TEM analysis was directly sampled with special in-situ method during the processing. Atomic force microscopy (AFM) was used to observe 3-D nanogold layer surfaces on a slide glass for the following biomolecule conjugation step. The size of gold nanoclusters had a close relationship with the processing condition such as evaporation temperature and chamber pressure. The approximately 1 nm size of nanogold was obtained at the processing condition for 1 torr at $1124 ^{\circ}C$.

Keywords

References

  1. H. Sawada and M. Esaki, J. Histochem Cytochem., 48, 493 (2000) https://doi.org/10.1177/002215540004800407
  2. A. Kohler, B. Lauritzen and C. J. F. Van Noorden, J. Histochem Cytochem., 48, 993 (2000)
  3. How does Gold Cluster Labeling Work, http://www.nanoprobes.com (2003)
  4. A. C. Xenoulis, G. doukellis and T. Tsakalakos, Nano-struct. Mater., 10, 1347 (1998) https://doi.org/10.1016/S0965-9773(99)00006-9
  5. J. H. Yu, J. S. Lee and K. H. Ahn, Scripta Mater., 44, 2213 (2001) https://doi.org/10.1016/S1359-6462(01)00747-3
  6. S. H. Hyun and B. S. Kang, J. Am. Ceram. Soc., 12, 3093 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04554.x
  7. S. Miyaka, N. Kinomura, T. Suzuki and T. Suwa, J. Mater. Sci., 12, 2921 (1999) https://doi.org/10.1023/A:1004651822289
  8. M. I. Baraton and L. Merhari, Mater. Trans., 42, 1616 (2001) https://doi.org/10.2320/matertrans.42.1616
  9. S. Yatsuya, S. Kasukabc and R. Uyeda, Jpn. J. Appl. Phys., 12, 1675 (1973) https://doi.org/10.1143/JJAP.12.1675
  10. K. Sattler, J. Muhlbach and E. Recknagel, Phys. Rev. Lett., 45, 821 (1980) https://doi.org/10.1103/PhysRevLett.45.821
  11. R. W. Siegel, Ann. Rev. Mater. Sci., 21, 559 (1991) https://doi.org/10.1146/annurev.ms.21.080191.003015
  12. H. Konard, T. Haubold, R. Birringer and H. Gleiter, Nanostruct. Mater., 7, 605 (1996) https://doi.org/10.1016/0965-9773(96)00038-4
  13. K. Wenger, B. Walker, S. Tsantilis and S. E. Pratsinis, Chem. Engin. Sci., 57, 1753 (2002) https://doi.org/10.1016/S0009-2509(02)00064-7
  14. M. C. Barnes, I. D. Jeon, D. Y. Kim and N. M. Hwang, J. Cryst. Growth, 242, 455 (2002) https://doi.org/10.1016/S0022-0248(02)01417-3
  15. Feng Ye, M. C. Yang, X. K. Sun and W. D. Wei, Nanostruct. Mater., 9, 113 (1997) https://doi.org/10.1016/S0965-9773(97)00031-7
  16. R. W. Siegal, Materials Science and Technology, p. 583, vol. 15, VCH, Weinheim, (1991)
  17. T. Hihara, D. Peng and K. Sumiyama, Mater. Trans., 42, 1480 (2001) https://doi.org/10.2320/matertrans.42.1480