• Title/Summary/Keyword: Evaluation of Floor Impact Noise

Search Result 72, Processing Time 0.026 seconds

A Study on the Heavy-weight Floor Impact Sound Reduction Evaluation of Characteristics by Resilient Materials (완충재 종류에 따른 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1145-1148
    • /
    • 2007
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

  • PDF

Criteria for multiple noises in residential buildings uslng combined rating system (공동주택 생활소음의 통합 평가등급 설정)

  • Ryu, Jong-Kwan;Lee, Pyoung-Jik;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.367-371
    • /
    • 2005
  • Social noise survey on multiple residential noises such as nut impact, air-borne, bathroom, drainage and traffic noises was conducted to investigate major variables affecting the overall satisfaction for noise environment The effect of individual noise perception on the evaluation of the overall noise environment was investigated through a questionnaire survey on annoyance, disturbance and noise sensitivity. Auditory experiments was also undertaken to determine noise level according to the percent of satisfaction for individual noise source. As a result of survey, it was found that satisfaction for floor impact noise most greatly affects the overall satisfaction for noise environment and annoyance most greatly affects the satisfaction for individual noise sources. Result of auditory experiment showed that the noise level of floor impact noise by bang machine, airborne, drainage and traffic noise corresponding to 50% satisfaction is 44dB($L_{i,Fmax,AW}$) and 40dBA, respectively.

  • PDF

A Study on the Characteristics of the Floor Impact Noise and Vibration According to Structure Types of Apartment House (공동주택 구조 유형별 바닥진동 및 바닥충격음 특성)

  • Lee, Ku-Dong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.35-39
    • /
    • 2009
  • Recently, the flat-plate structure is widely used because it has many advantages such as reduction of story height, long span etc than the RC rahmen structure. Furthermore, application of the flat-plate is on the increase because of flexible plan unlike wall structure. Long span have been at a disadvantage for vibration serviceability evaluation, however studies about vertical direction vibration of flat-plate structure has not been carried out. This study analysis the characteristics according to slab structure to make an experiment on vibration and floor impact noise for the flat-plate structure in construction performance laboratory in Kolon E&C R&D center, the flat-plate structure applied to the post-tension method, and the wall structure in apartment houses.

  • PDF

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

A Study on the Structural-acoustic Analysis Modeling Methods of the Room with Heavy Impact Noise Source (중량충격원 충격에 따른 공동주택 실내공간의 구조음장 해석 모델링방법에 관한 연구)

  • Lee, Jae-Kwang;Koo, Hae-Shik
    • KIEAE Journal
    • /
    • v.9 no.6
    • /
    • pp.81-87
    • /
    • 2009
  • The purpose of the present study is to establish structural noise analyzing method for apartments building floor with structural-acoustic coupling analysis modeling. Noise through floor in the room is recognized as a significant problem with the consequence that noise isolation technique has been studied in the various fields of industry. From among noise factors, resonance sound is the main reason for solid noise of the floor, which is occurred by mechanical vibrations of the acoustic boundary line and the change of velocity. To analyse this phenomenon, numerical computation methods are provided in many fields, In this study, evaluation method for slab is established using finite element method, and a case study for analyzing acoustic phenomenon was suggested. The results show that numerical method, especially F.E.M, has a good approximation to predict noise at floors.

Introduction of Floor Impact Sound Insulation Performance Test Lab. of T Company (T사 바닥충격음 실험동 소개)

  • Baek, Geon-Jong;Shin, Hoon;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.17-20
    • /
    • 2008
  • To develop floor impact sound resilient materials of apartment house effectively, floor impact sound insulation performance test lab. was designed and constructed in T company. Introducing specification and basic performance of this lab. could be helpful in plan and design of another lab. Floor space size of this lab. is $4.2m{\times}5.5m$ and this size is similar with that of living room of usual apartment house's (about $100m^2$) and the height of lab. is 2.4m. Slab thickness is designed by 180mm. Frequency characteristics is similar to general apartment house. Reverberation time of sound receiving room displays 1.26sec in 125Hz by establishing sound-absorbing materials. For light weight impact sound insulation performance of concrete bare floor structure is estimated by $L_{i,AW}\;=\;73$ and for heavy weight is estimated by $L_{i,Fmax,AW}\;=\;50$. Sound pressure level distribution of sound receiving room is ranged very uniformly. With these results, floor impact sound resilient materials could be evaluated and the results could be trusted by comparison tests.

  • PDF

Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System (건식 이중바닥구조의 중량충격음 저감성능 평가)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF

A Combined Rating System for Multiple Noises in Residential Buildings (공동주택 복합 생활소음의 통합 평가등급)

  • Ryu, Jong-Kwan;Jeon, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1005-1013
    • /
    • 2006
  • A survey and auditory experiment on multiple residential noises such as floor impact, airborne, bathroom, drainage and traffic noises were conducted to develop a combined rating system and to establish criteria for multiple residential noises. Subjective reactions such as annoyance, activity disturbance, sleep disturbance, and satisfaction to overall noise environment and each residential noise were recorded. The effect of individual noise perception on the evaluation of the overall noise environment was also investigated. The survey results showed that satisfaction for floor impact noise most greatly affects the overall satisfaction for overall noise environment and annoyance most greatly affects the satisfaction for individual noise sources. Auditory experiments were undertaken to determine the percent satisfaction for individual noise levels. Result of auditory experiment showed that the noise level corresponding to 40 % satisfaction is 49 dB $(L_{i,Fmax,AW})$ for floor impact and is about 40 dB(A) for airborne, drainage and traffic noise. From the results of the survey and the auditory experiments, an equation for predicting the overall satisfaction for multiple noises was developed and a classification of multiple residential noises was proposed.

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

Measurements of Floor Impact Noise Using a New Impact Ball (고무공 충격원을 이용한 바닥충격음 측정)

  • 정정호;전진용;류종관
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.208-213
    • /
    • 2003
  • The purpose of this study is to review the use of a new standard impactor, the impact ball, in evaluating heavy-weight impact noises in reinforced concrete structures. A survey revealed that children running and jumping are the major heavy-weight impact sources in multi-story residential buildings. The noise from the impact ball was measured and psychoacoustically assessed. The relationship between the noise levels and the subjective responses was also investigated. Results showed that the noise from the impact ball is similar to the noise of children running and jumping. It was also found that the noise level of the impact ball is slightly higher than the noise level of a bang machine, although the impact ball has a lower impact force.

  • PDF