• Title/Summary/Keyword: Evacuation stair

Search Result 25, Processing Time 0.025 seconds

Vertical Evacuation Speed in Stairwell of a High-rise Office Building (업무용 고층건물 계단실의 보행속도에 관한 연구)

  • Joung, Suck-Hwan;Yoon, Myong-Oh
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.13-20
    • /
    • 2015
  • As building height is increased, more careful decisions about the required safe egress time is needed for evacuation. This study analyzed the influence of three training sessions on the vertical speed of evacuation in the high rise building. Evacuation experiments were done in a high-rise office building in Seoul, and we analyzed the vertical evacuation speed as a function of density using a camera. Controlled and uncontrolled total evacuation were compared using the Pathfinder simulation. The process of repeated training, changed the specific stair utilization rate from 6.3% to 39.5%. The vertical evacuation speed as a function of density was analyzed using the equation s = 1.004 ? 0.288D, which is very similar to the equation used in a different study. The total evacuation time of the special controlled total evacuation was reduced by about 25% compared to the simultaneous evacuation.

The Study of Crowd Movement in Stair and Turnstile of Subway Station (지하철 역사에서의 계단 및 개찰구 군중흐름에 관한 연구)

  • Kim, Myeoung-Hun;Kim, Eung-Sik;Cho, Ju-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.88-95
    • /
    • 2009
  • Most of subway stations are located underground and the number of passengers is far more than that of designed value, therefore the risk of accident is growing bigger and serious damage is expected in case of disaster. In Korea the period of evacuation study is short and numerical and experimental data of evacuation phenomena in subway station is rare. Many egress evaluation depend on foreign commercial S/Ws which are not yet proven its availability in special case such as subway station. In this paper outflow coefficients which are essential in egress evaluation are calculated at train door, stairway and turnstile at 3 most crowed subway stations. This numerical data can be used in prediction of egress evaluation and the result of other prediction methods can be verified with these experimental data.

A Study on the Evacuation Planning in the Multiplex Cinema (멀티플렉스 영화관의 피난계획에 관한 연구)

  • So Eun-Tark;Song Byung-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.147-155
    • /
    • 2005
  • As multiplex theaters are increasing rapidly in number, concerns over the evacuation process in case of fire emergency are also increasing. The study investigates the users' awareness and recognition of evacuation route by the method of questionnaire, and analyzes the users' behavior in choosing the route by the simulation program called Simulex. Among others, findings indicate a vast majority of the users are unaware of the proper route in the emergency, yet anticipate to evacuate by it, instead of the entry/exit route that they are familiar with. This aspect, however, can be useful to provide the proper route of evacuation for the users, if an appropriate information is given that the entry/exit route is also used as an emergency egress. The simulation shows heavy congestion at the closer evacuation route from the exit, and distinctly less traffic at the farther means of egress. Based on this natural phenomenon, it is suggested that the emergency stair should be nearby and aligned with the exit from auditorium. Although the present building regulation only requires a minimum dimension at each route, there is a need to widen the passageway that is likely to be recognized easily and subsequently overcrowded in case of fire emergency.

A study of comparative of evacuation time by platform type according to the propagation speed of smoke in subway platform fire (지하철 승강장 화재시 연기의 전파속도에 따른 승강장 형태별 피난시간 비교·분석 연구)

  • Kim, Jin-Su;Rie, Dong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.577-588
    • /
    • 2017
  • There are many constraints, both economically and ethically that experimenting human evacuation behavior in situations such as fire. Therefore, the evacuation behavior is simulated based on the existing studies. In recent years, the foundation has been established as computer performance advances, models closer to reality can be studied. In this study, the evacuation time in the subway platform was analyzed from modeling human behavior and smoke propagation in a fire. The evacuation efficiency was also examined by dividing the shape of the subway station platform by the stair position and comparing the evacuation times for each platform. As a result, it was found that the side platform was longer than the island platform by 36.82% more time to evacuation. The shape of the stairs is most advantageous in terms of evacuation form side type platform was 210 seconds and island type platform was 186 seconds, when a fire occurs in the center of the platform. And most favorable in location of evacuation stairs were located at 2/5 point and 4/5 from depending on the step location.

A Study on the Actual Smoke Exhaust Condition and Improvement Program of Special Escape Stair (건축물 특별피난계단의 배연 실태 및 개선방안에 관한 연구)

  • Rie, Dong-Ho;Kim, Ha-Young;Kim, Jung-Yup;Shim, Kyu-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.286-289
    • /
    • 2008
  • In this study, we have survey of the actual smoke exhaust condition and improvement program in special escape stair. We have collected and analysed the survey view take 50 professional advice. Domestic a technical and legal standard is rated as compared with an advanced countries to $40{\sim}60%$. Hazard must be improved a security with the evacuation where the standard of present time is safe the reply with 64% to appear it was analyzed with the fact that the improvement which it follows hereupon is necessary.

  • PDF

A Study on Comparison and Shortening of Evacuation Time Required of University Library by Simulation (시뮬레이션을 통한 대학도서관의 피난 소요시간 비교 관한 연구)

  • An, Jeong-Pill;Kim, Gwang-Hee
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.16 no.2
    • /
    • pp.10-18
    • /
    • 2017
  • The University library is a reality where facilities can be a massive upset by the space of students to study space and book materials. Also, many print materials can cause fires quickly in fires, resulting in massive amounts of human casualties caused by many toxic gases. This study purpose is compares the time spent in the evacuation of the current state through the simulation, which seeks to derive a reasonable library of evacuation design, and improved inside the evacuation. As a result, the most obvious way to reduce the time required to evacuate is to diversify the evacuation routes and to disperse them. However, if the extension of the gate is not feasible, it is possible to reduce the time of escape by increasing the width of the gate and the width of the stair. If the results of this study are applied to new construction or remodeling of the library and prepare for fire evacuation, it will be a much safer library facility.

Analysis of the Effect of the Effective width of the Exit of the Evacuation Stairs on the Evacuation Time of the Occupants (피난계단 출입구 유효너비가 수용인원의 피난시간에 미치는 영향 분석)

  • Yang, Sung-Hoon
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.73-79
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the relationship between the minimum effective width (90cm) of the exit of the evacuation stairway installed in accordance with the Building Act and the evacuation time of all occupants using the corresponding floor from an evacuation point of view. Method: The evacuation simulation (Pathfinder) was used to investigate how the change in doorway width affects the evacuation time of occupants. Result: It was found that as the effective width of the doorway became larger than the minimum standard of 90cm, the evacuation time to the evacuation stairs was shortened. This is also proof that the effective width of the evacuation stair entrance can be appropriately applied differently depending on the number of occupants on the floor. Conclusion: In the future, in order to secure evacuation safety of occupants, it is judged that the effective width standard for the exit of the evacuation stairway considering the total number of occupants by use is necessary. In addition, it is expected that the evacuation efficiency of occupants can be greatly increased if various effective width standards for entrances are made according to the number of occupants by use through research and experiments.

Study on the Shortening Effect of the Egress Travel Time Based on an Escape Scenarios by Using Shuttle Elevators for Lotte Tall Building's Evacuation Plan (초고층건물 피난계획시 피난용 엘리베이터 이용에 의한 피난소요시간의 단축효과 연구)

  • Park, Hyung-Joo;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.46-54
    • /
    • 2018
  • A total of 19 elevators for evacuation were installed in the Lotte World Tower and it is planned to operate the shuttle using the manual key from five refuge floors to the 1st floor in an emergency. In the event of a fire or other disaster, it is necessary to conduct intensive analysis to determine how much RSET reduction could be achieved using the evacuation elevator compared to the existing evacuation plans. When the optimal transportation sharing ratio by the evacuation elevators was 40% at the Lotte World Tower, the RSET of the evacuation scenario in parallel with the elevators in the entire building was calculated to be 1 hour and 2 minutes. The RSET of a conventional evacuation scenario (Walking along the stairs without using the elevators) was calculated to be 1 hour 29 minutes, therefore, the former evacuation scenario were found to have a shortening effect of approximately 27 minutes compared to the latter. On the other hand, to maintain this effect, each part of the evacuation route using the elevator must have the capability to protect the evacuee from any hazards caused by fires, such as smoke, flame, and radiant heat during the evacuation. Moreover, the evacuation route should be continuous from the residence position of the elevator user to the final evacuation site, and be recognized easily.

A Study on the Indoor Evacuation Using Matsim (활동기반 교통모형 MATSim을 이용한 실내 피난 분석)

  • Kim, Joo young;Lee, Seung jae;Ahn, Chi won
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.18-31
    • /
    • 2018
  • It is important to conduct various analyzes to evacuate occupants in advance, because the disaster can cause serious injury. Therefore, it is necessary to analyze all the predictable scenarios that may occur. In this study, we propose a method to analyze the evacuation of indoor disaster using activity - based transport model MATSim. We have developed the university building as target area and simulated about 5,000 occupants. The analysis scenarios are set as basic evacuation conditions, exit closures and emergency stair closures. As a result of analysis of each scenario, the evacuation time was analyzed to be about 5:40(340s) in the base scenario, increased by 15% in the scenario 2 and increased by 23% in scenario 3. As a result of this study, we suggest that it is important to manage illegal obstacles of emergency stairs for rapid evacuation. Therefore, this study can contribute to the effective disaster prevention strategy of the building.

Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons (대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석)

  • Oh, Su-cheol;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.641-651
    • /
    • 2022
  • This research compares and analyzes evacuation time depending on the change in stair width in case of fire at Goshiwons. For this, a simulation has been conducted based on possible evacuation time according to the calculation method for the number of people admittable to a specific target for fire fighting equipped with accommodation. Currently, Gosiwon, which is classified as an accommodation facility (a total floor area of 500 m2 or more), uses blind spots prescribed by the Fire Services Act, Building Act, and Parking Act to build a high-rise building on a small area of land, and most Gosiwon is transformed into a modified accommodation. This is in line with the owner's operating profit, so it is expected to show a continuous increase. Securing the golden time of Gosiwon evacuation time is the last bastion of Gosiwon residents who belong to the economically disadvantaged in our society, and we hope this study will serve as a starting point for discussions on revising related laws and regulations to establish a social safety net As a result of the evacuation simulation analysis, the evacuation time was the least when the width of the group and the evacuation stairs were expanded to 200cm, and the evacuation time of the existing building was reduced by up to 166.3 seconds by comparing 648.4 seconds and scenario 6. This analysis can be meaningful, in that the width of the evacuation stairs revision of related laws and regulations for the safety of multiplex available premises.