• Title/Summary/Keyword: European option

Search Result 69, Processing Time 0.02 seconds

Valuation of Options in Incomplete Markets (불완전시장 하에서의 옵션가격의 결정)

  • Park, Byungwook
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.45-57
    • /
    • 2004
  • The purpose of this paper is studying the valuation of option prices in Incomplete markets. A market is said to be incomplete if the given traded assets are insufficient to hedge a contingent claim. This situation occurs, for example, when the underlying stock process follows jump-diffusion processes. Due to the jump part, it is impossible to construct a hedging portfolio with stocks and riskless assets. Contrary to the case of a complete market in which only one equivalent martingale measure exists, there are infinite numbers of equivalent martingale measures in an incomplete market. Our research here is focusing on risk minimizing hedging strategy and its associated minimal martingale measure under the jump-diffusion processes. Based on this risk minimizing hedging strategy, we characterize the dynamics of a risky asset and derive the valuation formula for an option price. The main contribution of this paper is to obtain an analytical formula for a European option price under the jump-diffusion processes using the minimal martingale measure.

A SURVEY ON AMERICAN OPTIONS: OLD APPROACHES AND NEW TRENDS

  • Ahn, Se-Ryoong;Bae, Hyeong-Ohk;Koo, Hyeng-Keun;Lee, Ki-Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.791-812
    • /
    • 2011
  • This is a survey on American options. An American option allows its owner the privilege of early exercise, whereas a European option can be exercised only at expiration. Because of this early exercise privilege American option pricing involves an optimal stopping problem; the price of an American option is given as a free boundary value problem associated with a Black-Scholes type partial differential equation. Up until now there is no simple closed-form solution to the problem, but there have been a variety of approaches which contribute to the understanding of the properties of the price and the early exercise boundary. These approaches typically provide numerical or approximate analytic methods to find the price and the boundary. Topics included in this survey are early approaches(trees, finite difference schemes, and quasi-analytic methods), an analytic method of lines and randomization, a homotopy method, analytic approximation of early exercise boundaries, Monte Carlo methods, and relatively recent topics such as model uncertainty, backward stochastic differential equations, and real options. We also provide open problems whose answers are expected to contribute to American option pricing.

Option Pricing with Leptokurtic Feature (급첨 분포와 옵션 가격 결정)

  • Ki, Ho-Sam;Lee, Mi-Young;Choi, Byung-Wook
    • The Korean Journal of Financial Management
    • /
    • v.21 no.2
    • /
    • pp.211-233
    • /
    • 2004
  • This purpose of paper is to propose a European option pricing formula when the rate of return follows the leptokurtic distribution instead of normal. This distribution explains well the volatility smile and furthermore the option prices calculated under the leptokurtic distribution are shown to be closer to the market prices than those of Black-Scholes model. We make an estimation of the implied volatility and kurtosis to verify the fitness of the pricing formula that we propose here.

  • PDF

Direct Nonparametric Estimation of State Price Density with Regularized Mixture

  • Jeon, Yong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.721-733
    • /
    • 2011
  • We consider the state price densities that are implicit in financial asset prices. In the pricing of an option, the state price density is proportional to the second derivative of the option pricing function and this relationship together with no arbitrage principle imposes restrictions on the pricing function such as monotonicity and convexity. Since the state price density is a proper density function and most of the shape constraints are caused by this, we propose to estimate the state price density directly by specifying candidate densities in a flexible nonparametric way and applying methods of regularization under extra constraints. The problem is easy to solve and the resulting state price density estimates satisfy all the restrictions required by economic theory.

THE DYNAMICS OF EUROPEAN-STYLE OPTION PRICING IN THE FINANCIAL MARKET UTILIZING THE BLACK-SCHOLES MODEL WITH TWO ASSETS, SUPPORTED BY VARIATIONAL ITERATION TECHNIQUE

  • FAROOQ AHMED SHAH;TAYYAB ZAMIR;EHSAN UL HAQ;IQRA ABID
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.3_4
    • /
    • pp.141-154
    • /
    • 2024
  • This article offers a thorough exploration of a modified Black-Scholes model featuring two assets. The determination of option prices is accomplished through the Black-Scholes partial differential equation, leveraging the variational iteration method. This approach represents a semi-analytical technique that incorporates the use of Lagrange multipliers. The Lagrange multiplier emerges as a beacon of efficiency, adeptly streamlining the computational intricacies, and elevating the model's efficacy to unprecedented heights. For better understanding of the presented system, a graphical and tabular interpretation is presented with the help of Maple software.

Modeling Implied Volatility Surfaces Using Two-dimensional Cubic Spline with Estimated Grid Points

  • Yang, Seung-Ho;Lee, Jae-wook;Han, Gyu-Sik
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2010
  • In this paper, we introduce the implied volatility from Black-Scholes model and suggest a model for constructing implied volatility surfaces by using the two-dimensional cubic (bi-cubic) spline. In order to utilize a spline method, we acquire grid (knot) points. To this end, we first extract implied volatility curves weighted by trading contracts from market option data and calculate grid points from the extracted curves. At this time, we consider several conditions to avoid arbitrage opportunity. Then, we establish an implied volatility surface, making use of the two-dimensional cubic spline method with previously estimated grid points. The method is shown to satisfy several properties of the implied volatility surface (smile, skew, and flattening) as well as avoid the arbitrage opportunity caused by simple match with market data. To show the merits of our proposed method, we conduct simulations on market data of S&P500 index European options with reasonable and acceptable results.

Application of quasi-Monte Carlo methods in multi-asset option pricing (준난수 몬테칼로 방법을 이용한 다중자산 옵션 가격의 추정)

  • Mo, Eun Bi;Park, Chongsun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.669-677
    • /
    • 2013
  • Quasi-Monte Carlo method is known to have lower convergence rate than the standard Monte Carlo method. Quasi-Monte Carlo methods are using low discrepancy sequences as quasi-random numbers. They include Halton sequence, Faure sequence, and Sobol sequence. In this article, we compared standard Monte Carlo method, quasi-Monte Carlo methods and three scrambling methods of Owen, Faure-Tezuka, Owen-Faure-Tezuka in valuation of multi-asset European call option through simulations. Moro inversion method is used in generating random numbers from normal distribution. It has been shown that three scrambling methods are superior in estimating option prices regardless of the number of assets, volatility, and correlations between assets. However, there are no big differences between them.

An Improved Binomial Method using Cell Averages for Option Pricing

  • Moon, Kyoung-Sook;Kim, Hong-Joong
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.170-177
    • /
    • 2011
  • We present an improved binomial method for pricing financial deriva-tives by using cell averages. After non-overlapping cells are introduced around each node in the binomial tree, the proposed method calculates cell averages of payoffs at expiry and then performs the backward valuation process. The price of the derivative and its hedging parameters such as Greeks on the valuation date are then computed using the compact scheme and Richardson extrapolation. The simulation results for European and American barrier options show that the pro-posed method gives much more accurate price and Greeks than other recent lattice methods with less computational effort.

DOMAIN OF INFLUENCE OF LOCAL VOLATILITY FUNCTION ON THE SOLUTIONS OF THE GENERAL BLACK-SCHOLES EQUATION

  • Kim, Hyundong;Kim, Sangkwon;Han, Hyunsoo;Jang, Hanbyeol;Lee, Chaeyoung;Kim, Junseok
    • The Pure and Applied Mathematics
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2020
  • We investigate the domain of influence of the local volatility function on the solutions of the general Black-Scholes model. First, we generate the sample paths of underlying asset using the Monte Carlo simulation. Next, we define the inner and outer domains to find the effective volatility region. To confirm the effect of the inner domain, we use the root mean square error for the European call option prices, and then change the values of volatility in the proposed domain. The computational experiments confirm that there is an effective region which dominates the option pricing.

FINITE DIFFERENCE METHOD FOR THE TWO-DIMENSIONAL BLACK-SCHOLES EQUATION WITH A HYBRID BOUNDARY CONDITION

  • HEO, YOUNGJIN;HAN, HYUNSOO;JANG, HANBYEOL;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • In this paper, we develop an accurate explicit finite difference method for the two-dimensional Black-Scholes equation with a hybrid boundary condition. In general, the correlation term in multi-asset options is problematic in numerical treatments partially due to cross derivatives and numerical boundary conditions at the far field domain corners. In the proposed hybrid boundary condition, we use a linear boundary condition at the boundaries where at least one asset is zero. After updating the numerical solution by one time step, we reduce the computational domain so that we do not need boundary conditions. To demonstrate the accuracy and efficiency of the proposed algorithm, we calculate option prices and their Greeks for the two-asset European call and cash-or-nothing options. Computational results show that the proposed method is accurate and is very useful for nonlinear boundary conditions.