• Title/Summary/Keyword: Euler operations

Search Result 18, Processing Time 0.026 seconds

Design and Control of Robot Arm for Inspection and Rescue Operations (재난 탐사 및 구조를 위한 로봇팔 설계 및 제어)

  • Kang, Jin-Il;Choi, Hyeung-Sik;Jun, Bong-Huan;Ji, Dae-Hyeong;Oh, Ji-Yoon;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.888-894
    • /
    • 2016
  • This paper presents the kinematic and dynamic analysis of the robot arm for inspection and rescue operations. The inspection robot arm has Pitch-Pitch-Pitch-Yaw motion for an optimal and stable view of the camera installed at the end of the manipulator. The rescue operation robot arm has Yaw-Pitch-Pitch-Roll motion to handle heavy tools. Additionally, both robot arms are waterproof, as they use the triple-layer O-ring. Furthermore, the dynamic equation including the damping force due to the mechanical seal for waterproofness was derived by using the Newton-Euler method. A control system using the ARM processor was developed and introduced in this paper, and its performance was verified through experiments.

Development of Boolean Operations for CAD System Kernel Supporting Non-manifold Models (비다양체 모델을 수용하는 CAD 시스템 커널을 위한 불리안 조직의 개발)

  • 김성환;이건우;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.20-32
    • /
    • 1996
  • The boundary evaluation technique for Boolean operation on non-manifold models which is regarded as the most popular and powerful method to create and modify 3-D CAD models has been developed. This technique adopted the concept of Merge and Selection in which the CSG tree for Boolean operation can be edited quickly and easily. In this method, the merged set which contains complete information about primitive models involved is created by merging primitives one by one, then the alive entities are selected following the given CSG tree. This technique can support the hybrid representation of B-rep(Boundary Representation) and CSG(Constructive Solid Geometry) tree in a unified non-manifold model data structure, and expected to be used as a basic method for many modeling problems such as data representation of form features, and the interference between them, and data representation of conceptual models in design process, etc.

  • PDF

대수체계의 발견에 관한 수학사적 고제

  • 한재영
    • Journal for History of Mathematics
    • /
    • v.15 no.3
    • /
    • pp.17-24
    • /
    • 2002
  • It will be described the discovery of fundamental algebras such as complex numbers and the quaternions. Cardano(1539) was the first to introduce special types of complex numbers such as 5$\pm$$\sqrt{-15}$. Girald called the number a$\pm$$\sqrt{-b}$ solutions impossible. The term imaginary numbers was introduced by Descartes(1629) in “Discours la methode, La geometrie.” Euler knew the geometrical representation of complex numbers by points in a plane. Geometrical definitions of the addition and multiplication of complex numbers conceiving as directed line segments in a plane were given by Gauss in 1831. The expression “complex numbers” seems to be Gauss. Hamilton(1843) defined the complex numbers as paire of real numbers subject to conventional rules of addition and multiplication. Cauchy(1874) interpreted the complex numbers as residue classes of polynomials in R[x] modulo $x^2$+1. Sophus Lie(1880) introduced commutators [a, b] by the way expressing infinitesimal transformation as differential operations. In this paper, it will be studied general quaternion algebras to finding of algebraic structure in Algebras.

  • PDF

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Fast two dimensional DCT by Polynomial Transform without complex operations (복소연산이 없는 Polynomial 변환을 이용한 고속 2 차원 DCT)

  • Park, Hwan-Serk;Kim, Won-Ha
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1940-1943
    • /
    • 2003
  • 본 논문은 Polynomial 변환을 이용하여 2차원 Discrete Cosine Transform (2D-DCT)의 계산을 1차원 DCT로 변환하여 계산하는 알고리즘을 개발한다. 기존의 일반적인 알고리즘인 row-column이 N×M의 2D-DCT에서 3/2NMlog₂(NM)-2NM+N+M의 합과 1/2NMlog₂(NM)의 곱셈이 필요한데 비하여 본 논문에서 제시한 알고리즘은 3/2NMlog₂M +NMlog₂N-M-N/2+2의 합과 1/2NMlog₂M의 곱셈 수를 필요로 한다. 기존의 polynomial 변환에 의한 2D DCT는 Euler 공식을 적용하였기 때문에 복소 연산이 필요하지만 본 논문에서 제시한 polynomial 변환은 DCT의 modular 규칙을 이용하여 2D DCT를 ID DCT의 합으로 직접 변환하므로 복소 연산이 필요하지 않다. 또한 본 논문에서 제시한 알고리즘은 각 차원에서 데이터 크기가 다른 임의 크기의 2차원 데이터 변환에도 적용할 수 있다.

  • PDF

Bank's Market Power and Firm Access to Capital Markets in Asia

  • Lee, Sunglyong;Seol, Youn
    • Management Science and Financial Engineering
    • /
    • v.19 no.1
    • /
    • pp.43-47
    • /
    • 2013
  • We investigate the effect of bank's market power on financing constraints of non-financial firms in 11 Asian countries between 1995 and 2009. Using firm-level data we analyze financial constraints with the Euler equation derived from the dynamic investment model. We find that with a highly concentrated banking sector firms which have high market power are less financially constrained. These results are consistent with an information-based hypothesis that more market power increases bank's advantage to produce information on potential borrowers.

Design of Side Cores of Plastic Injection Mold with Interference Check (플라스틱 사출금형의 간섭 검사에 의한 사이드 코어의 설계)

  • 신기훈;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1064-1074
    • /
    • 1992
  • Eliminating the under-cut caused by interference between a mold and a product in designing a mold for in jection molding processes is a very important problem. In general, the under-cut problem can be avoided by side cores which are the principal members of a mold assembly. In this research, a procedure has been developed by which the side cores and the corresponding core and cavity plates of a mold are generated after identifying the mold faces preventing product faces from moving while being discharged. The characteristic features of the procedure suggested in this paper are as follows. One is that the interference faces between the product and the mold are derived only from the core plate(or cavity plate) alone without considering the product together. The other is that the algorithm in the designing of side cores and modifying molds, is very efficient because it uses Euler operations instead of Boolean operations.

Determination of the Static Rigidity of the End Mill Using Neural Network (신경망을 이용한 엔드밀의 정적 강성 결정)

  • Lee, Sang-Kyu;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.12
    • /
    • pp.143-152
    • /
    • 1997
  • The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.

  • PDF