• Title/Summary/Keyword: Euler load

Search Result 138, Processing Time 0.02 seconds

Dynamic Instability Analysis of Euler Column under Impact Loading (충격하중을 받는 Euler기둥의 동적좌굴 해석)

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • An explicit direct time integration method based solution algorithm is presented to predict dynamic buckling response of Euler column. On the basis of large deflection beam theory, a plane frame finite element is formulated and implemented into the solution algorithm. The element formulation takes into account geometrical nonlinearity and overall buckling of steel structural frames. The solution algorithm employs the central difference method. Using the computer program developed by the author, dynamic instability behavior of Euler column under impact loading is investigated by considering the time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by a short duration impact load is also studied. The validity and efficiency of the present formulation and solution algorithm are verified through illustrative numerical examples.

  • PDF

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

A study on critical load due to external force influencing on flight characteristics of a small slender body rocket. (가늘고 긴 소형로켓의 비행특성에 영향을 주는 외력에 기인한 임계하중에 관한 연구)

  • Go, Tae-Sig;Na, Seon-Hwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.393-397
    • /
    • 2007
  • The aim of this study is to investigate critical load, which can influence on flight path of a small slender body rocket, due to external forces such as thrust, drag and weight. The critical load was firstly obtained from Euler column equation, and compared with analysis results using Finite Element Method to evaluate the theoretical critical load.

  • PDF

Non-Linear Behavior of Tapered Simple Beam with a Floating Concentrated Load (변화위치 집중하중을 받는 변단면 단순보의 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentration load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastical is obtained from the final equilibrium stage. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of simple beam are derived , and solved numberically . Three kinds of tapered beam types are considered . The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

Geometrical Non-linear Analyses of Tapered Variable-Arc-Length Beam subjected to Combined Load (조합하중을 받는 변단면 변화곡선 보의 기하 비선형 수치해석)

  • Lee, Byoung-Koo;Oh, Sang-Jin;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • This paper deals with geometrical non-linear analyses of the tapered variable-arc-length beam, subjected to the combined load with an end moment and a point load. The beam is supported by a hinged end and a frictionless sliding support so that the axial length of the deformed beam can be increased by its load. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. These differential equations are numerically solved by the iteration technique for obtaining the elastica of the deformed beam. For validating theories developed herein, laboratory scaled experiments are conducted.

A general solution to structural performance of pre-twisted Euler beam subject to static load

  • Huang, Ying;Chen, Chang Hong;Keer, Leon M.;Yao, Yao
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • Based on the coupled elastic bending deformation features and relationships between the internal force and deformation of pre-twisted Euler beam, the generalized strain, the equivalent constitutive equation and the equilibrium equation of pre-twisted Euler beam are developed. Based on the properties of the dual-antisymmetric matrix, the general solution of pre-twisted Euler beam is obtained. By comparison with ANSYS solution by using straight Beam-188 element based on infinite approach strategy, the results show that the developed method is available for pre-twisted Euler beam and also provide an accuracy displacement interpolation function for the subsequent finite element analysis. The effect of pre-twisted angle on the mechanical property has been investigated.

Numerical Analysis of Large Deflections of Cantilever Beams (캔틸레버 보의 과대처짐 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1990
  • A method is developed for solving the elastica of cantilever beam subjected to a tip point load and uniform load. The Bernoulli-Euler differential equation of deflected beam is used. The Runge-Kutta method and the Regula Falsi method are used to perform the integration of the differential eqution and to determine the horizontal deflection, respectively. The horizontal and vertical deflections of the free end, and the free-end rotations are calculated for a range of parameters representing variations in tip point load and uniform load. All results are presented in nondimensional forms. And some typical elastic are also presented.

  • PDF

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.431-454
    • /
    • 2016
  • In this paper, the nonlinear static and free vibration analysis of Euler-Bernoulli composite beam model reinforced by functionally graded single-walled carbon nanotubes (FG-SWCNTs) with initial geometrical imperfection under uniformly distributed load using finite element method (FEM) is investigated. The governing equations of equilibrium are derived by the Hamilton's principle and von Karman type nonlinear strain-displacement relationships are employed. Also the influences of various loadings, amplitude of the waviness, UD, USFG, and SFG distributions of carbon nanotube (CNT) and different boundary conditions on the dimensionless transverse displacements and nonlinear frequency ratio are presented. It is seen that with increasing load, the displacement of USFG beam under force loads is more than for the other states. Moreover it can be seen that the nonlinear to linear natural frequency ratio decreases with increasing aspect ratio (h/L) for UD, USFG and SFG beam. Also, it is shown that at the specified value of (h/L), the natural frequency ratio increases with the increasing the values amplitude of waviness while the dimensionless nonlinear to linear maximum deflection decreases. Moreover, with considering the amplitude of waviness, the stiffness of Euler-Bernoulli beam model reinforced by FG-CNT increases. It is concluded that the R parameter increases with increasing of volume fraction while the rate of this parameter decreases. Thus one can be obtained the optimum value of FG-CNT volume fraction to prevent from resonance phenomenon.