The purpose of this research is to study the nonlinear free vibration and post-buckling analysis of functionally graded carbon nanotube reinforced composite (FG-CNTRC) beams resting on a nonlinear elastic foundation. Uniformly and functionally graded distributions of single walled carbon nanotubes as reinforcing phase are considered in the polymeric matrix. The modified form of rule of mixture is used to estimate the material properties of CNTRC beams. The governing equations are derived employing Euler-Bernoulli beam theory along with energy method and Hamilton's principle. Applying von $K\acute{a}rm\acute{a}n's$ strain-displacement assumptions, the geometric nonlinearity is taken into consideration. The developed governing equations with quadratic and cubic nonlinearities are solved using variational iteration method (VIM) and the analytical expressions and numerical results are obtained for vibration and stability analysis of nanocomposite beams. The presented comparative results are indicative for the reliability, accuracy and fast convergence rate of the solution. Eventually, the effects of different parameters, such as foundation stiffness, volume fraction and distributions of carbon nanotubes, slenderness ratio, vibration amplitude, coefficients of elastic foundation and boundary conditions on the nonlinear frequencies, vibration response and post-buckling loads of FG-CNTRC beams are examined. The developed analytical solution provides direct insight into parametric studies of particular parameters of the problem.
Amir, Saeed;Khani, Mehdi;Shajari, Ali Reza;Dashti, Pedram
Structural Engineering and Mechanics
/
v.63
no.2
/
pp.171-180
/
2017
Static and dynamic instability of a viscoelastic carbon nanotube (CNT) embedded on a thermo-elastic foundation are investigated, in this research. The CNT is modeled based on Euler-Bernoulli beam (EBB) and nonlocal small scale elasticity theory is utilized to analyze the structure. Governing equations of the system are derived using Hamilton's principle and differential quadrature (DQ) method is applied to solve the partial differential equations. The effects of variable axial load and diverse boundary conditions on static/vibration instability are studied. To verify the result of the DQ method, the Galerkin weighted residual approach is used for the instability analysis. It is observed appropriate agreement for results of two different solution methods and satisfactory accuracy with those obtained in prior studies. The results of this work could be useful for engineers and designers in order to produce and design nano/micro structures in thermo-elastic medium.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.18
no.2
/
pp.177-184
/
2008
The dynamic stability of elastically restrained cantilever pipe conveying fluid with crack is investigated in this paper. The pipe, which is fixed at one end, is assumed to rest on an intermediate spring support. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of a crack severity and position, mass ratio and the velocity of fluid flow on the stability of a cantilever pipe by the numerical method are studied. Also, the critical flow velocity for the flutter and divergence due to variation in the support location and the stiffness of the spring support is presented. The stability maps of the pipe system are obtained as a function of mass ratios and effect of crack.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.15
no.5
s.98
/
pp.586-594
/
2005
In this paper, we studied about the effects of the rotating cantilever pipe conveying fluid with a moving mass. The influences of a rotating angular velocity, the velocity of fluid flow and moving mass on the dynamic behavior of a cantilever pipe have been studied by the numerical method. The equation of motion is derived by using the Lagrange's equation. The cantilever pipe is modeled by the Euler-Bernoulli beam theory. When the velocity of a moving mass is constant, the lateral tip-displacement of a cantilever pipe is proportional to the moving mass and the angular velocity. In the steady state, the lateral tip-displacement of a cantilever pipe is more sensitive to the velocity of fluid than the angular velocity, and the axial deflection of a cantilever pipe is more sensitive to the effect of a angular velocity. Totally, as the moving mass is increased, the frequency of a cantilever pipe is decreased in steady state.
Journal of the Computational Structural Engineering Institute of Korea
/
v.19
no.1
s.71
/
pp.85-92
/
2006
This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.18
no.1
/
pp.101-109
/
2008
The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.
In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.
Yaghoobi, Hessameddin;Valipour, Mohammad Sadegh;Fereidoon, Abdolhossein;Khoshnevisrad, Pooria
Steel and Composite Structures
/
v.17
no.5
/
pp.753-776
/
2014
In this paper, nonlinear vibration and post-buckling analysis of beams made of functionally graded materials (FGMs) resting on nonlinear elastic foundation subjected to thermo-mechanical loading are studied. The thermo-mechanical material properties of the beams are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and to be temperature-dependent. The assumption of a small strain, moderate deformation is used. Based on Euler-Bernoulli beam theory and von-Karman geometric nonlinearity, the integral partial differential equation of motion is derived. Then this PDE problem which has quadratic and cubic nonlinearities is simplified into an ODE problem by using the Galerkin method. Finally, the governing equation is solved analytically using the variational iteration method (VIM). Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the influences of thermal effect, the effect of vibration amplitude, elastic coefficients of foundation, axial force, end supports and material inhomogenity are presented for future references. Results show that the thermal loading has a significant effect on the vibration and post-buckling response of FG beams.
The existing researches on the dynamics of the fluid-conveying pipes only focus on stability and vibration problems, and there is no literature report on the wave propagation of the fluid-conveying pipes. Therefore, the purpose of this paper is to explore the propagation characteristics of longitudinal and flexural waves in the fluid-conveying pipes. First, it is assumed that the material properties of the fluid-conveying pipes vary based on a power function of the thickness. In addition, it is assumed that the material properties of both the fluid and the pipes are closely depended on temperature. Using the Euler-Bernoulli beam equation and based on the linear theory, the motion equations considering the thermal-mechanical-fluid coupling is derived. Then, the exact expressions of phase velocity and group velocity of longitudinal waves and bending waves in the fluid-conveying pipes are obtained by using the eigenvalue method. In addition, we also studied the free vibration frequency characteristics of the fluid-conveying pipes. In the numerical analysis, we successively studied the influence of temperature, functional gradient index and liquid velocity on the wave propagation and vibration problems. It is found that the temperature and functional gradient exponent decrease the phase and group velocities, on the contrary, the liquid flow velocity increases the phase and group velocities. However, for vibration problems, temperature, functional gradient exponent parameter, and fluid velocity all reduce the natural frequency.
In the present study, the limit point buckling and postbuckling behaviors of sinusoidal, shallow arches with pinned supports subjected to localized sinusoidal loading, based on the Euler-Bernoulli beam theory, are numerically analyzed. There are some studies on the buckling of sinusoidal shallow arches under the effect of sinusoidal loading. However, in these studies, the sinusoidal loading acts along the horizontal projection of the entire shallow arch. No study has been found in the relevant literature pertaining to the stability of the shallow arches subjected to various lengths of sinusoidal loading. Therefore, the purpose of this paper is to contribute to the literature by examining the effect of the length of the localized sinusoidal loading and the initial rise of the shallow arch on the limit point buckling and postbuckling behaviors. Equilibrium paths corresponding to certain values of the length of the localized sinusoidal loading and various values of the initial rise parameter are presented. It has been observed that the length of the sinusoidal loading and the initial rise parameter affects the transition from no buckling to limit point instability remarkably. The deformed configurations of the sinusoidal shallow arch under localized loading regarding buckling and postbuckling states are illustrated, as well. The effects of the length of the localized sinusoidal loading on the internal forces of the shallow arch are investigated during various stages of the loading.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.