• Title/Summary/Keyword: Euler Bernoulli beam theory

Search Result 276, Processing Time 0.02 seconds

Nonlinear forced vibration of imperfect FG beams with hygro-thermal factor

  • Y.J. He;G.L She
    • Structural Engineering and Mechanics
    • /
    • v.92 no.2
    • /
    • pp.163-172
    • /
    • 2024
  • This paper intends to analyze the nonlinear forced vibrations of functionally graded material (FGM) beams with initial geometrical defects in hygro-thermal ambiences. For this purpose, we assume that the correlation properties of the material alter along the thickness direction in succession and the surface of the beam is subjected to humid and thermal loads. Based on the Euler Bernoulli beam theory and geometrical non-linearity, we use the Hamiltonian principle to formulate a theoretical model with consideration of the hygrothermal effects. Galerkin's technique has been proposed for the control equations of discrete systems. The non-linear primary resonances are acquired by applying the modified Lindstedt-Poincare method (MLP). Verify the reliability of the data obtained through comparison with literature. The non-linear resonance response is reflected by amplitude-frequency response curves. The numerical results indicate that the resonances of FGM beams include three non-linear characteristics, namely hard springs, soft springs and soft-hard spring types. The response modalities of the structure may transform between those non-linear characteristics when material properties, spring coefficients, geometric defect values, temperature-humidity loads and even the external stimulus generate variations.

Free vibration analysis of a piezoelectric nanobeam using nonlocal elasticity theory

  • Kaghazian, Abbas;Hajnayeb, Ali;Foruzande, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.617-624
    • /
    • 2017
  • Piezoelectric nanobeams are used in several nano electromechanical systems. The first step in designing these systems is conducting a vibration analysis. In this research, the free vibration of a piezoelectric nanobeam is analyzed by using the nonlocal elasticity theory. The nanobeam is modeled based on Euler-Bernoulli beam theory. Hamilton's principle is used to derive the equations of motion and also the boundary conditions of the system. The obtained equations of motion are solved by using both Galerkin and the Differential Quadrature (DQ) methods. The clamped-clamped and cantilever boundary conditions are analyzed and the effects of the applied voltage and nonlocal parameter on the natural frequencies and mode shapes are studied. The results show the success of Galerkin method in determining the natural frequencies. The results also show the influence of the nonlocal parameter on the natural frequencies. Increasing a positive voltage decreases the natural frequencies, while increasing a negative voltage increases them. It is also concluded that for the clamped parts of the beam and also other parts that encounter higher values of stress during free vibrations of the beam, anti-nodes in voltage mode shapes are observed. On the contrary, in the parts of the beam that the values of the induced stress are low, the values of the amplitude of the voltage mode shape are not significant. The obtained results and especially the mode shapes can be used in future studies on the forced vibrations of piezoelectric nanobeams based on Galerkin method.

Study on Method of Crack Detection of L-beams with Coupled Vibration (연성진동하는 L형 단면 보의 크랙 검출 방법에 대한 연구)

  • Son, In-Soo;Cho, Jeong-Rae;Ahn, Sung-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.78-86
    • /
    • 2010
  • This paper aims to investigate the natural frequency of a cracked cantilever L-beams with a coupled bending and torsional vibrations. In addition, a theoretical method for detection of the crack position and size in a cantilever L-beams is presented based on natural frequencies. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using extended Hamilton's Principle. The dynamic transfer matrix method is used for calculation of a exact natural frequencies of L-beams. In order to detect the crack of L-beams, the effect of spring coefficients for bending moment and torsional force is included. In this study, the differences between the actual data and predicted positions and sizes of crack are less than 0.5% and 6.7% respectively.

Free vibration of an axially functionally graded pile with pinned ends embedded in Winkler-Pasternak elastic medium

  • Cetin, Dogan;Simsek, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.583-594
    • /
    • 2011
  • In the present study, free vibration of an axially functionally graded (AFG) pile embedded in Winkler-Pasternak elastic foundation is analyzed within the framework of the Euler-Bernoulli beam theory. The material properties of the pile vary continuously in the axial direction according to the power-law form. The frequency equation is obtained by using Lagrange's equations. The unknown functions denoting the transverse deflections of the AFG pile is expressed in modal form. In this study, the effects of material variations, the parameters of the elastic foundation on the fundamental frequencies are examined. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)

  • Bilouei, Babak Safari;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Computers and Concrete
    • /
    • v.18 no.5
    • /
    • pp.1053-1063
    • /
    • 2016
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. For the first time, the nonlinear buckling of straight concrete columns armed with single-walled carbon nanotubes (SWCNTs) resting on foundation is investigated in the present study. The column is modelled with Euler-Bernoulli beam theory. The characteristics of the equivalent composite being determined using the Mori-Tanaka model. The foundation around the column is simulated with spring and shear layer. Employing nonlinear strains-displacements, energy methods and Hamilton's principal, the governing equations are derived. Differential quadrature method (DQM) is used in order to obtain the buckling load of structure. The influences of volume percent of SWCNTs, geometrical parameters, elastic foundation and boundary conditions on the buckling of column are investigated. Numerical results indicate that reinforcing the concrete column with SWCNTs, the structure becomes stiffer and the buckling load increases with respect to concrete column armed with steel.

Effects of Crack on Stability of Cantilever Pipe Conveying Fluid (유체유동 외팔 파이프의 안정성에 미치는 크랙의 영향)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1119-1126
    • /
    • 2007
  • In this paper, the dynamic stability of a cracked cantilever pipe conveying fluid with tip mass is investigated. The pipe is modelled by the Euler-Bernoulli beam theory in which rotatory inertia and shear deformation effects are ignored. The equation of motion is derived by the energy expressions using extended Hamilton's Principle. The crack section is represented by a local flexibility matrix connecting two undamaged pipe segments. The influence of the crack severity, the position of crack, the mass ratio, and a tip mass on the stability of a cantilever pipe conveying fluid are studied by the numerical method. Besides, the critical flow velocity and the stability maps of the pipe system as a function of mass ratios($\beta$) for the changing each parameter are obtained.

Free vibration analysis of continuous bridge under the vehicles

  • Tan, Guojin;Wang, Wensheng;Jiao, Yubo;Wei, Zhigang
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.335-345
    • /
    • 2017
  • Free vibration analysis for continuous bridge under any number of vehicles is conducted in this paper. Calculation strategy for natural frequency and mode shape is proposed based on Euler-Bernoulli beam theory and numerical assembly method. Firstly, a half-car planar model is adopted; equations of motion and displacement functions for bridge and vehicle are established, respectively. Secondly, the undermined coefficient matrices for wheels, vehicles, intermediate support, left-end support and right-end support are derived. Then, the numerical assembly technique for conventional finite element method is adopted to construct the overall matrix of coefficients for whole system. Finally, natural frequencies and corresponding mode shapes are determined based on iterative method and overall matrix solution. Numerical simulation is presented to verify the effectiveness of the proposed method. The results reveal that the solutions of present method are exact ones. Natural frequencies and associate modal shapes of continuous bridge under different conditions of vehicles are investigated. The influences of vehicle parameters on natural frequencies are also demonstrated.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

Dynamic Stability Analysis of Tapered Beck Columns (변단면 Beck 기둥의 동적안정 해석)

  • Lee Byoung-Koo;Lee Tae-Eun;Kang Hee-Jong;Kim Gwon-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to investigate the stability of tapered columns with clamped one end and carrying a tip mass of rotatory inertia with translational elastic support at the other end. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck columns is derived using the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter, mass ratio and spring stiffness.

  • PDF

Stability of Water Tower with a Relatively Small Footing (상대적으로 작은 기초를 갖는 급수탑의 안정성)

  • Oh Sang-Jin;Jin Tae-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.963-968
    • /
    • 2006
  • The main purpose of this paper is to investigate the stability of water tower with a relatively small footing. The water tower is modeled that the column carrying a container is supported by a rotational spring at the base and is of constant cross-section, with a weight per unit length of column axis. The column model is based on the Bernoulli-Euler beam theory. The Runge-Kutta method and Determinant Search method are used to perform the integration of the governing differential equation and to determine the critical values(critical own weight. and critical buckling load), respectively. The critical buckling loads are calculated over a range of system parameters: the rotational stiffness parameter, the dimensionless radius of container and the own weight parameter of the column. The relation between the rotational stiffness parameter and the critical own weight parameter of the column is analyzed.

  • PDF