• Title/Summary/Keyword: Euler Bernoulli

Search Result 523, Processing Time 0.025 seconds

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • In this paper Hamiltonian Approach (HA) have been used to analysis the nonlinear free vibration of Simply-Supported (S-S) and for the Clamped-Clamped (C-C) Euler-Bernoulli beams fixed at one end subjected to the axial loads. First we used Galerkin's method to obtain an ordinary differential equation from the governing nonlinear partial differential equation. The effect of different parameter such as variation of amplitude to the obtained on the non-linear frequency is considered. Comparison of HA with Runge-Kutta 4th leads to highly accurate solutions. It is predicted that Hamiltonian Approach can be applied easily for nonlinear problems in engineering.

Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams

  • Sarkar, Korak;Ganguli, Ranjan;Elishakoff, Isaac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.455-470
    • /
    • 2016
  • In this paper, we investigate the free vibration of axially loaded non-uniform Rayleigh cantilever beams. The Rayleigh beams account for the rotary inertia effect which is ignored in Euler-Bernoulli beam theory. Using an inverse problem approach we show, that for certain polynomial variations of the mass per unit length and the flexural stiffness, there exists a fundamental closed form solution to the fourth order governing differential equation for Rayleigh beams. The derived property variation can serve as test functions for numerical methods. For the rotating beam case, the results have been compared with those derived using the Euler-Bernoulli beam theory.

Free vibration of functionally graded thin beams made of saturated porous materials

  • Galeban, M.R.;Mojahedin, A.;Taghavi, Y.;Jabbari, M.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.999-1016
    • /
    • 2016
  • This study presents free vibration of beam made of porous material. The mechanical properties of the beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and simultaneously.

Theoretical Analysis of Carbon Nanotube Actuators (탄소나노튜브 작동기의 이론적 해석)

  • Park C.H.;Park H.C.;So H.K.;Jung B.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.927-931
    • /
    • 2005
  • Carbon nanotube actuator, working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube actuator simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two single-walled carbon nanotubes. For predicting the static and dynamic characteristic parameters, the analytical model for a 3 layer bimorph carbon nanotube actuator is developed by using Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy principles. The induced displacements of the theoretical model are presented in order to investigate the performance of the carbon nanotube actuator with different control voltages. The developed model presents invaluable means for designing and predicting the performance of carbon nanotube actuator that can be used in artificial muscle applications.

  • PDF

Crack Identification of Euler-Bernoulli Beam Using the Strain Energy Method (에너지 방법을 이용한 Euler-Bernoulli 보의 손상 규명)

  • Huh, Young-Cheol;Kim, Jae-Kwan;Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.396-400
    • /
    • 2006
  • We studied the influences of open cracks in free vibrating beam with rectangular section using a numerical model. The crack was assumed to be single and always open during the free vibration and equivalent bending stiffness of a cracked beam was calculated based on the strain energy balance. By Galerkin's method, the frequencies of cantilever beam could he obtained with respect to various crack depths and locations. Also, the experiments on the cracked beams were carried out to find natural frequencies. The cracks were initiated at five locations and the crack depths were increased by five steps at each location. The experimental results were compared with the numerical results and the comparison results were discussed.

  • PDF

A Study on the Optimal Position Determination of Middle Supporting Points to Maximize the First Natural Frequency of a Beam (보의 1차 고유진동수가 최대가 되는 중간지지점의 최적위치 선정에 관한 연구)

  • 안찬우;홍도관;김동영;최석창;박일수
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.89-95
    • /
    • 2001
  • This paper describes the natural frequencies obtained through FEA (Finite Element Analysis) and Numerical Analysis which uses the boundary conditions to each equation of motion and the consecutive conditions at each supporting point. And then. we studied on the optimal position determination of middle supporting points to maximize the natural frequency of a beam at 24 Models. We present the data of optimal condition for designing a beam.

  • PDF