• Title/Summary/Keyword: Ethanol1

Search Result 6,452, Processing Time 0.04 seconds

Excess Molar Enthalpies and Excess Molar Volumes for the Binary Mixtures {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol, and +2-(2-ethoxyethoxy)ethanol} at 298.15 K (2성분계 {1,2-dichloropropane+2-(2-methoxyethoxy)ethanol 및 + 2-(2-ethoxyethoxy)ethanol}에 대한 298.15 K에서의 과잉몰엔탈피 및 과잉몰부피)

  • Kim, Jaewon;Kim, Moongab
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.444-452
    • /
    • 2006
  • This paper reports experimental excess molar volumes $V^E_m$ using a digital vibrating-tube densimeter and excess molar enthalpies $H^E_m$ by means of an isothermal microcalorimeter with a flow mixing cell for the binary mixtures{1,2-dichloropropane + 2-(2-methoxyethoxy)ethanol} and {1,2-dichloropropane + 2-(2-ethoxyethoxy)ethanol} at 298.15 K under atmospheric pressure. All the $V^E_m$ and $H^E_m$ of the two binary mixtures showed S-shaped forms, being negative for poor and positive for rich 1,2-dichloropropane mole fractions. These show that the excess properties were shown to be negative deviation from ideality due to the strong self-association effect among 2-(2-alkoxyethoxy)ethanol molecules at an early stage of mixing, a relatively high energy then is needed to break hydrogen bonds of 2-(2-alkoxyethoxy)ethanol with an increase ofhalogenated hydrocarbon molecular at high mole fraction of 1,2-dichloropropane. The values of excess molar properties($V^E_m$ and $H^E_m$) were fitted by the Redlich-Kister equation using Nelder-Mead's simplex pattern search method. The Wilson, NRTL, and UNIQUAC models were used to correlate the $H^E_m$ values.

Recovery Yields of Protopectinase Depending on Treatments of Organic Solvents (유기용매의 처리에 따른 Bacillus subtillis IFO 12113 유래 Protopectinase의 회수)

  • Yuk, Hyun-Gyun;Hwang, Yong-Il;Lee, Seung-Cheol
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.107-111
    • /
    • 1997
  • To recover protopectinase (PPase) secreted from Bacillus subtilis IFO 12113, culture filtrate of the microorganism was treated with acetone, methanol, and ethanol, respectively. In the case of treatment with acetone at a ratio of 1: 1 (culture filtrate: acetone, v/v), PPase was purified 1.7-fold with 59.2% recovery The recovery of PPase was increased by increasing the acetone concentration. PPase was purified 4-fold with 100% recovery when the culture filtrate was precipitated with methanol at a ratio of 1 : 2 (culture filtrate: methanol, v/v). However, recovery of PPase was decreased by increasing the methanol concentration. PPase was purified 13.5-fold resulting in 68% recovery by the addition of ethanol with the final ratio 1 : 1(culture filtrate: ethanol, v/v) to the supernatant, which was obtained after precipitation of the culture filtrate with ethanol at a ratio of 1 : 0.5. These results show that methanol treatment is better than other organic solvent treatments for the simple recovery of PPase, whereas fractionated treatment of ethanol can recover PPase with higher purification fold.

  • PDF

Evaluation of a Waterless, Scrubless Chlorhexidine Gluconate/Ethanol Surgical Scrub and Povidone-Iodine for Antimicrobial Efficacy (물과 솔 없이 사용하는 외과적 손 소독제 Chlorhexidine/Ethanol 혼합제와 Povidone-iodine의 소독 효과)

  • Choi, Jeong-Sil
    • Journal of Korean Academy of Nursing
    • /
    • v.38 no.1
    • /
    • pp.39-44
    • /
    • 2008
  • Purpose: The purpose of this study was to compare 1% chlorhexidine-gluconate/61% ethanol (CHG/Ethanol) emollient and 7.5% povidone-iodine (PVI) scrub for antimicrobial, residual effect, and skin condition. Method: CHG/Ethanol emollient hand hygiene was performed waterless, and brushless by operating doctors and nurses (N=20). PVI hand washing was performed with water and a brush (N=20) for 5 min. The subjects were asked to press their left hand in hand-shaped agar before a surgical scrub, immediately after a surgical scrub and after the operation. The amount of isolated microorganisms were calculated by counting the number of divided areas($1{\times}1cm$, 160 cell) which were culture positive in the hand culture plate. The skin condition was evaluated. Result: The antimicrobial count of CHG/Ethanol emollient and PVI immediately post surgical scrub was 0.0 vs. 4.1 (p>.05), and after the operation was 0.1 vs. 37.8 (p>.05)respectively. The Residual effect of CHG/Ethanol emollient immediately post surgical scrub and after the operation were 0.0 vs. 0.1 (p>.05), and PVI were 4.1 vs. 37.8 (p>.05)respectively. The skin condition and satisfaction of CHG/Ethanol emollient was higher than PVI (p<.05). Conclusion: The antimicrobial effect between CHG/Ethanol emollient and PVI were the same. Considering skin condition, satisfaction and allergic reaction CHG/Ethanol emollient for surgical scrub is recommended in Korea.

Experimental renal artery embolization with iohexol-ethanol and barium-ethanol in dogs (개에서 iohexol-ethanol 및 barium-ethanol을 이용한 실험적 신동맥 색전술)

  • Hwang, Guk-jin;Chang, Dongwoo;Seo, Minho;Jung, Joohyun;Choi, Mincheol;Yoon, Junghee
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.3
    • /
    • pp.429-436
    • /
    • 2001
  • The present study was performed to investigate the effect of iohexol-ethanol mixture and barium-ethanol mixture on the induction of transcatheter renal artery embolization in healthy 18 dogs, which were divided into two groups of 9 dogs and the 9 dogs were divided into 3 subgroups of 3 dogs. The renal artery embolization was undertaken unilaterally with the dose of 1.5, 2.0, and 3.0 ml/kg iohexol-ehtanol mixture and with the dose of 0.2, 0.4, and 0.8 ml/kg barium-ethanol mixture. And serum chemistry on 0, 1,3, 7, and 14 days, intravenous pyelography on 7days, angiography on 14 days, and histopathology on 14 days were evaluated. Serum BUN and creatinine concentration of two groups with iohexol-ethanol mixture and barium-ethanol mixture administration were mildly increased a t 1 day after injection of embolic materials and then returned to baseline. No significant changes in BUN and creatinine levels occurred in any of dogs. In all dogs with the dose of 1.5 ml/kg iohexol-ethanol mixture, the renal arteries were not embolized. All dogs with the dose of 3.0 ml/kg died. In all dogs with the dose of 2.10 ml/kg, the treated arteries were completely occluded. In barium-ethanol mixture administered group, the renal artery in one dog with the dose of 0.2 ml/kg was not embolized. In all dogs with the dose of 0.8 ml/kg, the renal arteries were completely embolized, but loac overembolization occured in two dogs. All animals with the dose of 0.4 ml/kg had effective embolization and no evidence of radiopaque barium opacity in systemic arteries distal to the renal-artery was found. All embolized kidneys were shrunk and decreased in size in gross examination and were shown diffuse necrosis in histopathologic examination. In the present study, renal arteries were embolized with the dose of 2.0 ml/kg iohexol-ethanol mixture or 0.4 ml/kg barium-ethanol mixture. And it is considered that the dose had a satisfactory embolic effect.

  • PDF

Ethanol Production from Glycerol using Pachysolen tannophilus in a Surface-aerated Fermentor (Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산)

  • Kim, Yi-Ok;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.886-892
    • /
    • 2013
  • We investigated ethanol production from glycerol after screening of the yeast Pachysolen tannophilus ATCC 32691. For yeast to produce ethanol form glycerol, it is important that aeration is finely controlled. Therefore, we attempted to produce ethanol using a surface-aerated fermentor. When 880 ml of YPG medium (1% yeast extract, 2% peptone, 2% glycerol) was used to produce ethanol, the optimal aeration conditions for ethanol production were a surface aeration rate and agitation speed of 500 ml/min and 300 rpm, respectively. In a fed-batch culture, the maximum ethanol production and the maximum ethanol yield from glycerol (Ye/g) was 5.74 g/l and 0.166, respectively, after 90 hr using the surface-aerated fermentor.

Effects of Plant Vinegar Extract on the Reduction of Blood Concentration of Alcohol and Acetaldehyde in Alcohol Administrated Rats

  • Kwon, So-Yeon;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Excessive drinking causes 'alcohol hangover' within 8-16 hours. The cause of 'hangover' has not been elucidated exactly until now, but it is reported that it is caused by the creation of blood ethanol and acetaldehyde as ethanol metabolites. In this study vinegar extract of wood (VE) or OC-1, to which the powder extract of green tea leaves extract is added, was administered to the rats 30 minutes before the oral administration of ethanol (3 g/kg) and the blood ethanol and acetaldehyde concentration was measured in order to evaluate the efficacy of the beverage material for detoxification. As a result, the blood ethanol concentration in the group of the VE-1(vinegar crude extract) and VE-2 (double diluted solution) is statistically lower (P,0.05) than the exclusive alcohol administered control group. The blood acetaldehyde concentration of all groups of VE and OC-2, which is the double dilution of OC-1, is statistically low after 7 hours following ethanol administration. Especially, the AUC value of OC-2 group is statistically low compared to the control group. Accordingly, it indicates the conclusion that VE and OC-1, reducing the blood ethanol and acetaldehyde concentration which are two leading factors of 'hangover' after drinking, and worthwhile to be developed as beverage materials to eliminate 'hangover'.

Bacterial Contamination and Its Effects on Ethanol Fermentation

  • Chang, In-Seop;Kim, Byung-Hong;Shin, Pyong-Kyun;Lee, Wan-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.6
    • /
    • pp.309-314
    • /
    • 1995
  • Samples were collected from a commercial ethanol production plant to enumerate the bacterial contamination in each step of a starch based ethanol production process. Though the slurry of raw material used in the process carried bacteria with various colony morphology in the order of $10^4$ per ml, only the colonies of white and circular form survived and propagated through the processes to the order of $10^8$ per ml at the end of fermentation. Almost all of the bacterial isolates from the fermentation broth were lactic acid bacteria. Heterofermentative Lactobacillus fermentum and L. salivarius, and a facultatively heterofermentative L. casei were major bacteria of an ethanol fermentation. In a batch fermentation L. fermentum was more detrimental than L. casei to ethanol fermentation. In a cell-recycled fermentation, ethanol productivity of 5.72 g $I^{-1} h^{-1}$ was obtained when the culture was contaminated by L. fermentum, whilst that of the pure culture was 9.00 g $1^{-1} h^{-1}$. Similar effects were observed in a cell-recycled ethanol fermentation inoculated by fermentation broth collected from an industrial plant, which showed a bacterial contamination at the level of 10$^8$ cells per ml.

  • PDF

Studies on Ginseng Vinegar (인삼식초에 관한연구)

  • 김승겸
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.5
    • /
    • pp.447-454
    • /
    • 1999
  • Ginseng-vinegars were produced by the fermentation of 5% ethanol solution contained ginseng, red ginseng, ginseng marc and red ginseng marc using Acetobacter aceti 3281 for 26 days at 35$^{\circ}C$. The ginseng and red ginseng vinegar contained 0.236mg/ml of total sugar 0.236mg/ml of reducing sugar and 0.05% of ethanol and 1.005 of specific gravity 8,58CFU of viable cell count 3,24 of pH and 5.11% of acidity. Whereas the vinegars produced using the water-extracted red ginseng marc and the ethanol-extracted red ginseng marc were consisted of total sugar was 1.27mg/ml and 1.60mg/ml reducing sugar was 0.077mg/ml and 0.725mg/ml specific gravity was 1.001 and 1.004 the number of viable cells was 8.51CFU/ml and 8.1CFU/ml pH was 2.81 and 2.89 acidity was 5.18% and 5.32% respectvely ethanol concentration was 0.05% in both cases. In five-grade scoring test of sensory evaluation, it was estimated favorable that each vinegar made by were-extracted red ginseng marc, ethanol-extracted red ginseng marc ginseng and red ginseng ginseng from 0.5 to 32% of water-and ethanol-extract red ginseng was extracted with 10% white vinegar for 30 days. The best sensory vinegars were obtained that ginseng of 0.4~1.6% above red glnsend of 0.8% water-extracted red ginseng marc of 0.8~1.6% and ethanol-extracted red ginseng marc of 0.4~1.6% added in 10% white vinegar respectively.

  • PDF

Inhibition of Ethanol Absorption by Rhodiola sachalinensis in Rats

  • Kim, Moon-Hee;Park, Chan-Koo
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.432-437
    • /
    • 1997
  • We used a herbal medicine, roots of Rhodiola sachalinensis (RS) to assess whether RS extract can decrease blood ethanol concentrations in rats fed ethanol and if so, to elucidate the mechanism by which RS extract reduces blood ethanol levels. Rats were fed ethanol orally 1 hr after the oral administration of various doses of RS extract. In another experiment, rats were injected intraperitoneally with ethanol following the intake of RS extract via gastric catheter to eliminate possible inhibition of ethanol absorption in the gastrointestine by RS extract. The administration of RS extract remarkably lowered blood ethanol levels in a dose-dependent manner in rats given ethanol orally. However, the intake of RS extract did not reduce ethanol levels in rats injected with ethanol intraperitoneally. The activities of two main hepatic enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), involved in ethanol metabolism, were not affected by the administration of RS extract in rats fed ethanol. In addition, the intake of RS extract reduced serum triglyceride levels elevated by ethanol to the normal level. We conclude that the administration of RS extract lowers blood ethanol concentrations by inhibition of ethanol absorption in the gastrointestinal tracts of ethanol-fed animals.

  • PDF

Direct Fermentation of D-Xylose to Ethanol by Candida sp. BT001

  • LEE, SANG-HYEOB;WON-GI BANG
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.1
    • /
    • pp.56-62
    • /
    • 1994
  • A yeast strain, BT001, which can directly ferment D-xylose to ethanol was isolated from forest soils, and then identified as Candida sp. Cultural conditions for the optimum ethanol production, along with the effects of aeration on cell growth and ethanol production were investigated. Aeration stimulated the cell growth and the volumetric rate of ethanol production, but decreased the ethanol yield. Optimum temperature and initial pH for the ethanol production were $33{\circ}^C$ and 6.0, respectively. In a shake flask culture, this strain produced 52.3 g ethanol per liter from 12%(w/v) D-xylose after incubation for 96 hours. Ethanol yield was 0.436 g per g D-xylose consumed. This corresponds to 85.8% of theoretical yield. Also, this yeast strain produced ethanol from D-galactose, D-glucose and D-mannose, but not from L-arabinose and L-rhamnose. Among these sugars, D-glucose was the fastest in being converted to ethanol sugars.

  • PDF