• 제목/요약/키워드: Ethanol.

검색결과 9,307건 처리시간 0.034초

$\beta$-Carotene 대체 급여 및 에탄올의 만성적 급여가 흰쥐가 엽산대사에 미치는 영향 (Effects of Dietary $\beta$-Crotene Substitution for Vitamin A and Chronic Consumption of Ethanol on Folate Metabolism in Rats)

  • 임은선
    • Journal of Nutrition and Health
    • /
    • 제32권4호
    • /
    • pp.376-383
    • /
    • 1999
  • The effects of $\beta$-carotene substitutionl for vitamin A and the chronic consumption of ethanol of ethanol on hepatic folate metabolism were studied it rats. The substitution of $\beta$-carotene for vitamin A depressed hepatic 10-formyl-tetreahydrofolate dehydrogenase(10-formyl-tetrahydrofolate : NADP oxidoreductase, E.C. 1.5. 1.6)activity to 65% of controls(p<0.001) and enhanced hepatic 5, 10-methy-lenetetrahydrofolate reductase(E. C. 6.3.3.2)activity by 56% with respect to control levels(p<0.001). Hepatic activity of 10-formyltertrahydrofolate dehydrogenase was depressed to about half that of control levels by ethanol administration to rats(36% ethanol diet, p<0.001). The activity of 5, 10-methyleneterahydrofolate reductase was not changed by ethanol consumption. The increased activity of 5, 10-methyleneterahydrofolate reductase and the decreased activity of 10-formyltetrahydrofolate dehydrogenase appeared to decrease the level of nonmethyl folate conezyme and the rate of one-carbon metabolism. Plasma homocysteine concentrations were significantly higher in rats fed ethanol(p<0.01) o $\beta$-carotene(p<0.001) than in controls, which suggests that increased activity of 5, 10-methylenetetrahydrofolate reductase can depress homocysteine metabolism. We concluded that dietary substitution of $\beta$-carotene for vitamin A or chronic administration of ethanol resulted in changes in the activity of hepatic folate-dependent enzymes, which could affect the distribution of folate derivatives, plasma homocysteine levels and one-carbon metabolism.

  • PDF

Bacterial Contamination and Its Effects on Ethanol Fermentation

  • Chang, In-Seop;Kim, Byung-Hong;Shin, Pyong-Kyun;Lee, Wan-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권6호
    • /
    • pp.309-314
    • /
    • 1995
  • Samples were collected from a commercial ethanol production plant to enumerate the bacterial contamination in each step of a starch based ethanol production process. Though the slurry of raw material used in the process carried bacteria with various colony morphology in the order of $10^4$ per ml, only the colonies of white and circular form survived and propagated through the processes to the order of $10^8$ per ml at the end of fermentation. Almost all of the bacterial isolates from the fermentation broth were lactic acid bacteria. Heterofermentative Lactobacillus fermentum and L. salivarius, and a facultatively heterofermentative L. casei were major bacteria of an ethanol fermentation. In a batch fermentation L. fermentum was more detrimental than L. casei to ethanol fermentation. In a cell-recycled fermentation, ethanol productivity of 5.72 g $I^{-1} h^{-1}$ was obtained when the culture was contaminated by L. fermentum, whilst that of the pure culture was 9.00 g $1^{-1} h^{-1}$. Similar effects were observed in a cell-recycled ethanol fermentation inoculated by fermentation broth collected from an industrial plant, which showed a bacterial contamination at the level of 10$^8$ cells per ml.

  • PDF

Effects of Ethanol on $Na^+-dependent$ Solute Uptake in Rabbit Renal Brush-Border Membrane Vesicles

  • Kim, Yong-Keun;Ko, Sun-Hee;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권2호
    • /
    • pp.191-198
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+-dependent$ transport systems (glucose, phosphate, and dicarboxylate) in renal brush-border membrane vesicles (BBMV). Ethanol inhibited $Na^+-dependent$ uptakes of glucose, phosphate, and succinate in a dose-dependent manner, but not the uptakes of $Na^+-dependent.$ The $H^+/TEA$ antiport was reduced by 8% ethanol. Kinetic analysis showed that ethanol caused a decrease in $V_{max}$ of three transport systems, leaving $K_m$ values unchanged. Ethanol decreased phlorizin binding, which was closely correlated with the decrease in $V_{max}$ of $Na^+-glucose$ uptake. These results indicate that ethanol inhibits $Na^+-dependent$ uptakes of glucose, phosphate, and dicaboxylate and that the reduction in $V_{max}$ of $Na^+-glucose$ uptake is caused by a decrease in the number of active carrier proteins in the membrane.

  • PDF

배양액내 나트륨과 칼륨의 농도가 고온 발효 균주 Kluyveromyces marxianus의 발효에 미치는 영향 (Impact of sodium or potassium concentration in glucose aquoes solution to fermentation by Kluyveromyces marxianus)

  • 송우용;신수정
    • 펄프종이기술
    • /
    • 제47권3호
    • /
    • pp.11-17
    • /
    • 2015
  • In acid hydrolysis process of biomass saccharification. neutralization of acid hydrolyzate is essential step, which resulted in dissolved cations in glucose solution. Impact of cations to Kluyveromyces marxianus in glucose solution was investigated focused on ethanol fermentation. Either potassium or sodium cations decreased the ethanol fermentation and glucose to ethanol conversion. Glucose consumption by K. marxianus was delayed by increasing potassium cation concentration as completely consumed within 12 h in potassium cation 0.46 mol and 0.92 mol but within 24 h in potassium cation 1.38 mol. Also, ethanol fermentation process was slowed down with increasing concentration of the potassium sulfate. Fermentation of glucose solution to ethanol was more inhibited by sodium cation than potassium cation in glucose solution. Glucose was completely consumed within 24 h in sodium cation 0.95 mol. but at 1.90 mol or 2.84 mol in sodium cation could not finish the fermentation within 48 hour. Ethanol concentration was 22.26 g/L at low sodium cation in glucose solution with complete fermentation within 24 h. With increasing sodium cation in glucose solution, final ethanol concentration was reached at 14.10 g/L (sodium cation con) and 0.21 g/L (sodium cation con), which meant delaying of fermentation by sodium cations.

Poly(dimethyl siloxane)막에 의한 삼성분 알코올수용액의 투과증발 (Pervaporation of Ternary Aqueous Alcohol Solutions through Poly(dimethyl siloxane) Membrane)

  • 김상집;김진환
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1087-1095
    • /
    • 1996
  • Poly(dimethyl siloxane)막을 이용하여 $45^{\circ}C$에서 에탄올/이소프로판올/물의 삼성분 혼합물에 대한 투과증발실험을 행하고, 에탄올과 이소프로판올의 존재가 상호의 투과특성에 미치는 영향을 연구하였다. 에탄올과 이소프로판올은 각각 상호의 투과속도를 감소시키는 경향을 나타내었으며, 이소프로판올이 에탄올의 투과에 미치는 영향보다는 에탄올이 이소프로판올의 투과에 미치는 영향이 더 현저하였다. 투과속도의 감소는 고분자막에 대한 에탄올이나 이소프로판올의 가소화 영향보다는 투과성분 사이의 상호작용에 의한 영향이 더 크기 때문으로 생각되었다. 삼성분 혼합물에서 투과성분 사이의 강한 상호작용은 에탄올과 이소프로판올의 투과에 대한 추진력을 감소시키는 결과를 나타내었다.

  • PDF

만성적인 에탄올 섭취로 인한 쥐의 위 조직 손상에서 방사무늬 김(Pyropia yezoensis)의 보호효과 (Protective Effects of Pyropia yezoensis Glycoprotein against Ethanol-induced Chronic Gastric Injury in the Rat)

  • ;최정욱;이민경;김영민;김인혜;남택정
    • 한국수산과학회지
    • /
    • 제47권6호
    • /
    • pp.765-769
    • /
    • 2014
  • We examined the protective effects of Pyropia yezoensis glycoprotein (PYGP) against ethanol-induced gastric damage. The experimental animals were divided into four groups. They were treated with distilled water (control), ethanol alone (EtOH), ethanol + PYGP 150 mg/kg BW (EtOH+150), or ethanol + PYGP 300 mg/kg BW (EtOH+300). The groups were treated for 4 weeks. We measured mitogen-activated protein kinase (MAPK), the apoptotic signaling pathway, and PARP activity in gastric tissues obtained from the rats. Ethanol consumption increased apoptotic signal activity and ERK, JNK, and p38 phosphorylation. PYGP reduced the apoptotic signaling pathway activity and ERK, JNK, and p38 phosphorylation. Furthermore, PYGP regulated Bcl-2 family expression. In light of these findings, PYGP appears to prevent ethanol-induced gastric injury and oxidative stress.

에탄올 전처치한 흰쥐에 Xylene 투여가 간조직 중 Xanthine Oxidase 활성 변동에 미치는 영향 (Effect of Ethanol-pretreatment on the Liver Xanthine Oxidase Activity in Xylene-treated Rats)

  • 윤종국;이상희;전태원
    • 한국식품영양과학회지
    • /
    • 제27권4호
    • /
    • pp.739-744
    • /
    • 1998
  • To evaluate an effect of ethanol pretreatment on the liver xanthine oxidase(XO) activity, 0.25ml of xylene(50% in olive oil) per 100g body weight was daily given four days to the rats at 2hrs after aministration of ethanol each day, while each control group(ethanol, xylene, olive oli) was treated as the same dose described as above. The animals were sacrificed at 24hrs after last injection. Xylene-treated rats showed the more decreased activity of liver XO compared to the control. But the pretreatment of ethanol to the xylene-treated rats enhanced the liver XO activity. Furthermore, the xylene-treated rats led to more increased Vmax value in liver XO compared to the only xylene-treated rats. On the other hadn, hepatic aldehyde dehydrogenase activity was more decreased in xylene-treated rats pretreated with ethanol than in xylene-treated rats. And the intermediated xylene metabolites, methyl benzylalcohol or aldehyde inhibited the XO activity "in vitro". In conclusion, the phenomenon that pretreatment of ethanol to the xylene-treated rats led to the enhancement of liver XO activity, may be due to an influence of acetaldehyde.taldehyde.

  • PDF

에탄올 섭취가 $\beta$-Carotene을 급여한 흰쥐의 성장 및 비타민 A 상태에 미치는 영향 (Effect of Ethanol Consumption on Growth and Vitamin A Status in Rats Fed $\beta$-Carotene Supplemented Diets)

  • 서정숙;임화자
    • 한국식품영양과학회지
    • /
    • 제27권4호
    • /
    • pp.731-738
    • /
    • 1998
  • The present study was aimed to investigate the effect of dietary supplementation of $\beta$-carotene on vitamin A metabolism in ethanol-fed rats. Sprague-Dawley rats weighing 190~210g were fed a liquid diet containing 36% of total calories as ethanol for 6 weeks. The pair-fed control rats(1BP group, 2BP group) were given an isocaloric amount of diet containing sucrose instead of ethanol on the following day. Additionally, the liquid diet, contained different levels of $\beta$-carotene(1BE group: 2.1, 2BE group: 21mg/L liquid diet). Body weight gains and food efficiency ratios of ethanol groups were lower than those of pair-fed groups. This effect did not change with dietary supplementation of $\beta$-carotene. The levels of plasma and hepatic retionl were decreased after chronic ethanol feeding, but the values in 2BE group were higher than in 1BE group. The content of hepatic retinoic acid tended to increase in proportion to $\beta$-carotene supplementation. There results suggest that ethanol consumption may affect the vatamin A methabolism and reduce the conversion of $\beta$-carotene to retinol in rats.

  • PDF

에탄올 발효에서 초산 및 아세트알데히드 첨가에 의한 에탄올 수율의 증진 (Improvement of Ethanol Yield by Addition of Acetic Acid and Acetatdehyde in Ethanol Fermentation)

  • 김진현;여주상유영제
    • KSBB Journal
    • /
    • 제10권4호
    • /
    • pp.370-373
    • /
    • 1995
  • S.cerevisiae에 의한 에딴올 발효에셔 생성되는 부산물 인 acetic acid, acetaldehyde, glycerol, lactic acid, formic acid가 세포성장과 에탄올 생성에 미치는 영향을 고찰하였다. Acetic acid와 acetaldehyde 를 발효액 내에 투입하였을 때, 세포생장은 저해되 었으나, 에탄올 생성은 증가되었다. 한편, glycerol 과 lactic acid는 세포성장과 에탄올 생산에 거의 영 향이 없었다. Acetic acid와 acetaldehyde는 비성장 속도를 줄임과 동시에 정체기를 늘염으로써 세포성장을 저해하였다. 에단올 수율은 첨가된 acetic acid 와 acetaldehyde 농도에 비례하여 증가하였고, acetic acid $3g/\ell$, acetaldehyde $2g/\ell$ 일 때, 최대가 되었다.

  • PDF

Electrochemical Oxidation of Ethanol at Nickel Hydroxide Electrodes in Alkaline Media Studied by Electrochemical Impedance Spectroscopy

  • Kim, Jae-Woo;Park, Su-Moon
    • 전기화학회지
    • /
    • 제8권3호
    • /
    • pp.117-124
    • /
    • 2005
  • Electrochemical oxidation of ethanol at nickel electrodes has been studied in 1 M KOH solution containing 0.20M ethanol using electrochemical impedance spectroscopy. Equivalent circuits have been worked out by simulating the impedance data, and the results were used to model the oxidation of ethanol as well as the passivation of the electrode. The maximum rate of oxidation of $Ni(OH)_2$ to NiOOH was observed at about 0.37V vs. Ag/AgCl reference electrode, while the maximum rate of ethanol oxidation at the Ni electrode was observed at about 0.42V, The charge-transfer resistance for oxidation of the electrode itself became smaller in the presence of ethanol than in its absence. These results suggest that the $\beta-Ni(OH)_2/\beta-NiOOH$ redox couple is acting as an effective electron transfer mediator far ethanol oxidation. The kinetic parameters also were obtained by the experimental and simulated results.