• Title/Summary/Keyword: Estuary barrage

Search Result 103, Processing Time 0.025 seconds

A Case Study on the Implementation of a River Water Level Monitoring System using PLC(Programmable Logic Controller) and Public Telecommunication Network (PLC(Programmable Logic Controller)와 공중통신망을 이용한 하천수위감시시스템 구축 사례 연구)

  • Kim, Seokju;Kim, Minsoo
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.1-17
    • /
    • 2015
  • A river water level monitoring system which prevents salt water damages and effectively excludes floods has been developed to contribute efficient operation of Nakdong river estuary barrage. The system can be used for monitoring upstream conditions more quickly and do appropriate responses over changes. Telemetry and telecontrols using PLCs have been built at the three sites that directly influence on the operation of barrage gates, and are linked to Nakdong river estuary barrage's IOS (Integrated Operation System) through public communication networks. By using PLC, the system can achieve even higher reliability and versatility than before as well as easy management. By power control devices, we can remotely control the power of PLCs to treat the minor troubles instantly without going on-sites. The power control devices also save data in preparation for the cases of communication failures. The system uses ADSL (FTTH) as a main network between SCADA server and PLCs, and CDMA (M2M) as a secondary network. In order to compensate security vulnerabilities of public communication network, we have installed the VPNs for secure communication between center and the observation stations, just like a dedicated network. Generally, river water level observations have been used custom-manufactured remote terminals to suit their special goals. However, in this case, we have established a system with open architecture considering the interface between different systems, the ease of use and maintenance, security, price, etc.

DEVELOPMENT OF A REAL-TIME FLOOD FORECASTING SYSTEM BY HYDRAULIC FLOOD ROUTING

  • Lee, Joo-Heon;Lee, Do-Hun;Jeong, Sang-Man;Lee, Eun-Tae
    • Water Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.113-121
    • /
    • 2001
  • The objective of this study is to develop a prediction mode for a flood forecasting system in the downstream of the Nakdong river basin. Ranging from the gauging station at Jindong to the Nakdong estuary barrage, the hydraulic flood routing model(DWOPER) based on the Saint Venant equation was calibrated by comparing the calculated river stage with the observed river stages using four different flood events recorded. The upstream boundary condition was specified by the measured river stage data at Jindong station and the downstream boundary condition was given according to the tide level data observed at he Nakdong estuary barrage. The lateral inflow from tributaries were estimated by the rainfall-runoff model. In the calibration process, the optimum roughness coefficients for proper functions of channel reach and discharge were determined by minimizing the sum of the differences between the observed and the computed stage. In addition, the forecasting lead time on the basis of each gauging station was determined by a numerical simulation technique. Also, we suggested a model structure for a real-time flood forecasting system and tested it on the basis of past flood events. The testing results of the developed system showed close agreement between the forecasted and observed stages. Therefore, it is expected that the flood forecasting system we developed can improve the accuracy of flood forecasting on the Nakdong river.

  • PDF

The Change of Coastal Water Area due to the Development of Mokpo Harbor and Construction of Daebul Industrial Complex(I) (목포항 개발 및 대불 산업단지 조성에 따른 연안해역 변화(I)- 해면 정온도를 중심으로 -)

  • 이중우;정명선
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.2
    • /
    • pp.87-96
    • /
    • 1991
  • The change of water level at Mokpo Harbour and its adjacent coastal area due to the construction of the Youngsan Estuary Barrage and the Third Land Reclamation Work of estuary barren had been roughly expected. Periodical floods, which occur 2 times per month, are also being observed at the low lying commercial areas near the Mokpo Old Harbor. Although it is said that the highest tidal current component among the tidal current records at the approaching channel to Mokpo Harbor is reduced to 6 kts, because of the esturary barrage, they do not give any precise statement or a deep analysis for the flooding and periodical water level change under certain environmental conditions. Moreover, they never tried the analysis of development plan considering the natural disaster such as typhoon or other extreme conditions. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality , etc. because of the development considering the extreme condition. Thus, it is necessary to collect and analyze the data related to floodings, harbor oscillations, currents, and water quality, etc. because of the development considering the extreme condition and to evaluate the field observation and measurement, including the numerical model simulation based on the scientific approaches. This study deals the problem of the water level change among the integrated analyses of the coastal area changes. The result can be used for the integrated planning to give a strong foundation and it will contribute to the development of local area.

  • PDF

Prediction of Topographic Change in the Estuary of Nakdong River and Analysis of Its Contribution by External Force Condition (낙동강 하구 지형변화 예측 및 외력조건에 따른 기여도 분석)

  • Kim, Kang-Min;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.64-71
    • /
    • 2019
  • It is very important to understand the mechanism of estuary topographic changes for the study of estuary management and treatment methods. In this study, the effects from the land-side, such as rainfall, river discharge, sediment discharge, and sea side, such as tide, tidal current, wave and surface sediments related to the topographic changes of the Nakdong river estuary were investigated and analyzed. Based on the analyzed data, topographic modeling was performed to analyze the topographic change and contribution of external force conditions. As a result of numerical modeling, the topographic change showed that erosion that predominates in the water directly affected by the discharge of the estuary barrage. The deposition predominates in the indirectly affected tideland. As sediments moved along the water way being sorted and distributed by the wave, the deposition predominated in the front of the barrier island. Compared with the deposition dominance, which is the result of the topographic change prediction, the impact of each external force condition gives larger erosion. However, the combined impact of each external force condition showed deposition dominant. Therefore, the topographic changes of the Nakdong river estuary are considered to be the result of various complex external factors. The impacts of each external force condition show the different contribution to each comparison area. These results should be considered when establishing the estuary management method. It must be understood that this is the result of complex interactions.

Simulation of Pollutants Transport using 2-D Advection-Dispersion Model near Intake Station (2차원 이송-확산모형을 이용한 취수장 인근에서의 오염물질의 혼합거동 모의)

  • Kim, Jae-Dong;Kim, Young-Do;Lyu, Si-Wan;Seo, Il-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.791-794
    • /
    • 2008
  • The transport and dispersion of pollutants in natural river is a principal issue in intake station management. To study the pollutant transport in natural rivers, the effect of meandering and confluence of tributary on mixing process have to analyzed. The objective of this study is to simulate the mixing and transport of pollutants for operating water gate of Nakdong Estuary Barrage around the intake station. Mulgeum intake station being used as drinking water sources for Pusan. The flow around the intake station is influenced by operating water gate of Nakdong Estuary Barrage which is located downstream. The water gate system includes ten individual gates. The minor gate is usually opened according to elevation of the sea. When the river flow increases, the main water gate is opened. Daepo stream, tributary of the Nakdong river, is on opposite side of the intake station. The pollutants from Daepo stream often flows into the intake station acoording to the flow pattern. In this study, based on this simulation results, proper water gate operation which can minimize negative impact will be provided.

  • PDF

Distributional characteristics of mesozooplankton community in Nakdong river estuary (낙동강 하구역의 동물플랑크톤 군집 분포특성)

  • Kang, Jung-Hoon;Kim, Minju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.1-11
    • /
    • 2020
  • This study investigated the mesozooplankton community and the related environmental factors in the Nakdong River Estuary in May and early October shortly after passage of the typhoon "DUJUAN" in 2015. The mesozooplankton community was dominated by barnacle nauplii, foraminiferans, and Noctiluca scintillans, and the environmental characteristics were characterized by freshwater inflow through the Nakdong River barrage, the intrusion of warm currents, and the effect of typhoon passage in October. In May, cladocerans, such as Evadne nordmanni and Podon polyphemoides, as indicator species of brackish water, prevailed throughout the study area. The surface salinity was lowest on the inner side of the barrier-islands and increased gradually to the outer side during the study. The average concentration of total suspended solids in October was higher than that in May, while the averaged concentration of nitrate and chlorophyll-a in May was higher than those in October. On the other hand, there was no temporal difference in the total averaged abundance of mesozooplankton. In contrast, the distributional pattern of the mesozooplankton community was associated with the salinity gradient in both seasons. These results suggest that the temporal difference of the mesozooplankton community depended on the extent of freshwater inflow by barrage opening, the intrusion intensity of warm currents, and typhoon passage in the Nakdong River estuary in 2015.

The Establishment and Application of Hydraulic Channel Routing Model on the Nakdong River (II) Model Application (낙동강 유역 수리학적 하도추적 모형 구축 및 적용 (II) 홍수사상의 적용)

  • Lee, Eul Rae;Kim, Sang Ho
    • Journal of Wetlands Research
    • /
    • v.8 no.1
    • /
    • pp.83-96
    • /
    • 2006
  • In this study, hydraulic flood routing is performed by 1-Di. unsteady flow model, FLDWAV on the downstream of Nakdong river. For input information, KOWACO Rainfall-Runoff Model is used and resonable boundary condition is constructed. As the result of the application about the past flood event, good agreement of comparison with observed and calculated values are show in the interesting sites, Jindong and Samrangjin. Additionally, estuary barrage's WSL evaluation procedure is enhanced to accurate calculation, and it is defined by downstream boundary condition in Nakdiong river. The new regressive equation to calculate the predicted tide value is developed by considering the astronomical tide and past observed tide value at Nakdong estuary barrage. The guideline's construction of the new application and flood forecasing system of other river basins is possible by using this studied results.

  • PDF

Delta Development in the Nakdong River Estuary: a Literature Survey (낙동강 하구역 삼각주 발달에 관한 문헌 고찰 연구)

  • Yoon, Han-Sam;Yoo, Chang-Ill;Kang, Yoon-Koo;Ryu, Cheong-Ro
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.22-34
    • /
    • 2007
  • We present basic data for developing new research topics and closely examine the existing data on the development and organization of the Nakdong River Estuary Delta by analyzing various studies of the area, including ocean engineering, coastal engineering, ocean environmental engineering, geomorphological, and geological studies. We first defined the general concepts related to the estuary and delta and reviewed the historical development of the Nakdong River Estuary Delta over the past 100 years. We then examined the origin and core elements of the estuary deposits that constitute the delta. In addition, we scrutinized the main factors affecting the development of the delta and analyzed existing research on delta development mechanisms by core researchers. The construction of an estuary barrage is one of the main factors effecting estuarine circulation and has altered the physical oceanic environment, area of deposition, atmospheric environment, and vegetation community of the delta. These factors affect the estuary circulation in turn, altering the delta. Along the Nakdong River, an unsteady-state sandy barrier appears at approximately three times the distance of the wavelength of incident offshore waves, and this terrain forms approximately 10-15 years after reclamation in the interdistributary upper stream and transforms the shoreline. It is necessary to develop a technique to predict terrain change that reproduces the erosion and accumulation of estuarine deposits. To determine the parameters and variables necessary to reproduce this system, continuous on-site monitoring is necessary. The existing research did not fully examine the terrain changes in Nakdong River Estuary or the periodic developmental characteristics. To understand the future process of estuary delta development, it is necessary to establish an integrated management system.

Annual Changes in Scirpus planiculmis and Environmental Characteristics of the Nakdong River Estuary (낙동강 하구 새섬매자기의 연간 변동과 환경 특성)

  • Yi, Yong-Min;Yeo, Un-Sang;Oh, Dong-Ha;Sung, Ki-June
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.567-579
    • /
    • 2011
  • Scirpus planiculmis is one of the most dominant species found in the Nakdong River estuary. In order to understand the recent changes in S. planiculmis and the environmental characteristics of the estuary, from 2005 to 2010, an analysis of the density, total dry biomass, tuber biomass, and distribution pattern of S. planiculmis as well as an analysis of the temperature, salinity, precipitation, barrage discharge, and soil texture of the estuary were conducted. In 2006, the density ranged from 10.1 to $87.6no./m^2$, but in 2009, it ranged from 0.4 to $2.2no./m^2$ in 2009 and drastic reductions were observed throughout the sampled areas in the Nakdong river estuary. In 2010, S. planiculmis was observed on the tidal flats of Myungji and Mangummerydeung, at a density of $18.3{\pm}7.7no./m^2$ and $17.5{\pm}20.7no./m^2$, respectively. Hence, S. planiculmis is considered to be in a recovery phase. The aboveground/belowground ratio reduced from $4.54{\pm}0.70$ in 2005 to $1.91{\pm}0.35$ in 2009, clearly showing a large decrease in the biomass amount of the aboveground than of the belowground. Tubers were distributed in the soil, with only 36.0% at the 0~15 cm depth but 64.0% at the 15~30 cm depth. Apparently, tubers were more likely to be found at 15~30 cm below the soil in the Nakdong River estuary. A drastic reduction in the S. planiculmis biomass in 2009 is possibly due to the high salinity in S. planiculmis habitats.

The Gate Operation for Bolstering up Fish Migration in the Nakdong River Estuary (낙동강하구의 어류 이동성 향상을 위한 수문운영 방안 제안)

  • Jeong, Seokil;Han, Jeong-Ho;Lee, Ji-Young;Kim, Hwa-Young
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.468-480
    • /
    • 2022
  • Although the construction of the Nakdong River Estuary Barrage (NEB) improved the water supply in the region, it cut off the longitudinal connectivity of the estuary aquatic ecosystem. Thus, the social demands for opening the NEB have been continuously raised, and the efforts to restore the aquatic ecosystem of the Nakdong River estuary began in 2017. Many fish species have inhabited the Nakdong River estuary. Since their habitat and migration characteristics vary widely, the sluice gate operation considering them is essential for the restoration of the aquatic ecosystem. Therefore, in this study, we monitored the fish species living and migrating in the Nakdong River estuary and analyzed the possibility of smooth movement of for each fish species by calculating the average flow velocity according to the type and the height of the gate opening. Moreover, we selected the target fish species for each month and suggested the sluice gate operation according to the depth of the main habitat to present the measures that are ideal for optimal restoration of the aquatic ecosystem in the Nakdong River estuary area.