• Title/Summary/Keyword: Estimation of Distance

Search Result 1,197, Processing Time 0.031 seconds

Improvement of Radar Rainfall Estimation Using Radar Reflectivity Data from the Hybrid Lowest Elevation Angles (혼합 최저고도각 반사도 자료를 이용한 레이더 강우추정 정확도 향상)

  • Lyu, Geunsu;Jung, Sung-Hwa;Nam, Kyung-Yeub;Kwon, Soohyun;Lee, Cheong-Ryong;Lee, Gyuwon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.109-124
    • /
    • 2015
  • A novel approach, hybrid surface rainfall (KNU-HSR) technique developed by Kyungpook Natinal University, was utilized for improving the radar rainfall estimation. The KNU-HSR technique estimates radar rainfall at a 2D hybrid surface consistings of the lowest radar bins that is immune to ground clutter contaminations and significant beam blockage. Two HSR techniques, static and dynamic HSRs, were compared and evaluated in this study. Static HSR technique utilizes beam blockage map and ground clutter map to yield the hybrid surface whereas dynamic HSR technique additionally applies quality index map that are derived from the fuzzy logic algorithm for a quality control in real time. The performances of two HSRs were evaluated by correlation coefficient (CORR), total ratio (RATIO), mean bias (BIAS), normalized standard deviation (NSD), and mean relative error (MRE) for ten rain cases. Dynamic HSR (CORR=0.88, BIAS= $-0.24mm\;hr^{-1}$, NSD=0.41, MRE=37.6%) shows better performances than static HSR without correction of reflectivity calibration bias (CORR=0.87, BIAS= $-2.94mm\;hr^{-1}$, NSD=0.76, MRE=58.4%) for all skill scores. Dynamic HSR technique overestimates surface rainfall at near range whereas it underestimates rainfall at far ranges due to the effects of beam broadening and increasing the radar beam height. In terms of NSD and MRE, dynamic HSR shows the best results regardless of the distance from radar. Static HSR significantly overestimates a surface rainfall at weaker rainfall intensity. However, RATIO of dynamic HSR remains almost 1.0 for all ranges of rainfall intensity. After correcting system bias of reflectivity, NSD and MRE of dynamic HSR are improved by about 20 and 15%, respectively.

Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea (한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I))

  • 이순혁
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

A Study of Mounding Classification Analysis & Scale Calculation in Waterside Parks and Green Areas (수변 공원녹지의 마운딩 유형 및 규모산정 연구)

  • An, Byung-Chul;Bahn, Gwon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.4
    • /
    • pp.77-87
    • /
    • 2017
  • In this study, we investigated the physical form of planting foundation of the parks and green spaces in the waterside of Korea and classified them into groups showing common features. It was clssified into 7 kinds of parks and green spaces of 27 waterside parks in Korea including landscape, ecology, art, shields, site boundaries, windbreaks, and soundproofing. As a result, the study was carried out on the detailed type and size estimation through the sampling survey of planting foundation of landscape and ecological type mounding which can be statistically analyzed. Landscape and ecological mounding have the characteristics of securing the ecological stability of the waterside planting areas and the diversity of planting landscape. It is possible to create a green landscape through various terrain changes such as enclosing, focusing, and panoramic view. The physical characteristics of ecological and landscape type mounding can be expressed as height, width, and length And physical data can appear in various forms and sizes depending on the purpose and function of the buffer effect of the land use in the waterside planting areas, the landscape creation, the ecological buffer. In this study, the range of the physical scale for landscape and ecological mounding of waterside parks and green spaces was calculated. The range of the mounding height was analyzed to be less than 1.25m and more than 1.25m and the average height was 0.74~1.08m and 1.75~2.75m respectively. In addition, the range of width of mounding was less than 6.13m, 6.13~17.5m, and more than 17.5m, and the average width of each was 3.45~4.95m, 7.05~10.85m and 31.54~51.54m respectively. The range for the length of mounding was less than 50m, 50~500m, and more than 500m. The mean length of each mounding was 34.0m, 116.3m and 955.8m. It is difficult to distinguish the difference between the waterside planting areas and the urban greenery in the purpose and function of landscape and ecological mounding. However, considering the average distance of 60m from the waterside and the average height of 1.26m, we can conclud that opened planting foundation is prefered to high mounding designs in waterside planting areas. It is expected that the results presented for the improvement of the logical and spatial value of the waterside parks and green areas planting foundation design can be served as the basic data helpful for practical application in landscape architecture planning and design.

Scanning Determination & Observation Features by Sex shown in the Process of Acquiring Visual Information - With the Object of Subway Station Hall Space - (시각정보획득과정에 나타난 주사판정과 성별 주시특성 - 지하철 홀 공간을 대상으로 -)

  • Kim, Jong-Ha;Choi, Gae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.6
    • /
    • pp.115-124
    • /
    • 2014
  • This study has carried out scanning tests in order to figure out the features of scanning search by sex of space users, with the result of which the validity of data has been estimated. In this research, the scanning patterns were set up for verifying the typology of scanning paths and then the reason for determining scanning paths and the validity of estimation method were reviewed. Since the observation features depends on sex, the analysis of visual activities for acquiring any information in a space will reveal the intention and purpose of space users. The findings by analyzing the features of scanning pattern by sex which were found at the determination of scanning patterns can be defined as the followings. First, for estimating the process of space-information search, the movement distance at each point of continuative-observation data from the angle of eye-movement has been extracted, on the ground of which the fixation and movement of eye have been defined for the establishment of scanning-cut characteristics. Second, the scanning times were estimated for the extraction of effective observation data that would be used for comparative analysis, which showed that men had more data (3,398.2/64.4%) than women (2,998.2/55.6%). This enables the acknowledgment that the scanning cut of men was relatively less, which indicates that men will acquire more information on space than women in the process of observing any space. Third, men's scanning times (58.0 times/2.02 seconds) were less than those of women (71.9 times/1.39 seconds) while the scanning time of the former was longer than that of the latter, which shows the feature that it takes longer for men than women in scanning while the scanning times of the former is less than those of the latter. Fourth, the observation features can be determined that the combination of this result with the predominance character by sex for a general viewpoint to be employed indicates that while men employ mixed-scanning for observation activities to acquire space-information spending for longer time, women, by concentrated-scanning, focus on a single point for shorter time or stay at one location for a considerably long time for space-information acquirement.

Estimation of Magnitude of Debris Flow and Correlation Analysis Between Influencing Factors (토석류 규모 산정과 영향인자와의 상관성 분석)

  • Choi, Young-Nam;Hwan, Hui-Seok;Lee, Hyung-Ho;Yoo, Nam-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.79-87
    • /
    • 2017
  • In this paper, for 43 sites neighboring to western area of Gangwondo where disaster of debris flow occurred from 2006 to 2013, magnitude of debris flow was estimated from results of site investigation and correlation analysis between influencing factors to its magnitude was performed. Magnitude of channelized debris flow was found greater by 6.5 times of that of hill slope debris flow and approximately 5% of total volume was occurred at initiation part of channelized debris flow. As results of analyzing yield rate of debris flow, for channelized debris flow, yield rate values of $19m^3/m$ and $8m^3/m$ were obtained for total volume being over $10,000m^3/m$ as the large scale of debris flow and less than $10,000m^3/m$ respectively, and value of $5m^3/m$ was estimated for hill slope debris flow. As results of correlation analysis of influencing factors to magnitude of debris flow, runoff distance and erosion width were very highly correlated to its magnitude whereas average slope of basin and erosion depth showed relatively low correlation. In particular, value of erosion depth was in the range of 0.5-2.6 m, being similar range to the value proposed by Ikeya (1981). Triggering rainfall to debris flow such as continuous rainfall and maximum intensity of hour rainfall were analyzed to have low correlation with magnitude of debris flow.

Estimation of Allowable Drop Height for Oriental Pears by Impact Tests (충격시험에 따른 배의 허용낙하높이 추정)

  • Kim, M. S.;Jung, H. M.;Seo, R.;Park, I. K.;Hwang, Y. S.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.461-468
    • /
    • 2001
  • Impact between fruits and other materials is a major cause of product damage in harvesting and handling systems. The oriental pears are more susceptible to bruising than other fruits such as European pears and apples, and are required more careful handling. The interest in the handling of the pears for the processing systems has raised the question of the allowable drop height to which pears can be dropped without causing objectionable damage. Drop tests on pears were conducted using an impact device developed by authors to estimate the allowable drop height without bruising. The impact device was constructed to hold in a selected orientation and to release a fruit by vacuum for dropping on to a force transducer. The drop height was adjustable for zero to 60 cm to achieve the desired distance between the bottom of the fruits and the top of the impact force transducer. The transducer was secured to 150 kg$\sub$f/ concrete block. The transducer signal was sampled every 0.17 ms with a strain gage measurement board in the micro computer where it was digitaly stored for later analysis. The selected sample fruit was Niitaka cultivar of pears which is one of the most promising fruit for export in Korea. The pears were harvested during the 1998 harvest season from an orchard in Daejeon. The sample fruit was selected from two groups which were stored for 3 months and 5 months respectively by the method of current commercial practice. The pears were allowed to stabilize at environmental condition(18$^{\circ}C$, 65% rh) of the experimental room. One hundred fifty six pears were tested from the heights of 5, 7.5. 10 and 12.5 cm while measurement were made of impact peak force, contact time, time to peak force, dwell time, pear diameter and mass. The bioyield strength and modulus of elasticity were measured using UTM immediately after each drop test. The allowable drop height was estimated on the base of bioyield strength of the pears in two ways. One was assumed the peak force during impact test increasing linearly with time, and the other was based on the actual drop test results. The computer program was developed for measuring the impact characteristics of the pears and analyzing the data obtained in the study. The peak force increased while contact times decreased with increasing drop height and contact times of the sample from the hard tissue group. The allowable drop height increased with increasing bioyield strength and contact times, and also varied with Poisson\`s ratio, mass and equilibrium radius of the pears. The allowable drop height calculated by a theoretical method was in the range from 1 to 4 cm, meanwhile, the estimated drop height considering the result of the impact test was in the range from 1 to 6 cm. Since the physical properties of fruits affected significantly the allowable drop height, the physical properties of the fruits should be considered when estimating the allowable drop height.

  • PDF

The Analysis of the Road Freight Transportation using the Simultaneous Demand-Supply Model (수요-공급의 동시모형을 통한 공로 화물운송특성분석)

  • 장수은;이용택;지준호
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.4
    • /
    • pp.7-18
    • /
    • 2001
  • This study represents a first attempt in Korea to develop the simultaneous freight supply-demand model which considers the relationship between freight supply and demand. As the existing study was limited in one area, or the supply and the demand was separated and assumed not to affect each other, this study take it into consideration the fact that the demand affects supply and simultaneously vice versa. This approach allows us to diagnose a policy carried on and helps us to make a resonable alternative for the effectiveness of freight transportation system. To find a relationship between them, we use a method of econometrics. a structural equation theory and two stage least-squares(2SLS) estimation technique, to get rid of bias which involves two successive applications of OLS. Based on the domestic freight data, this study consider as explanatory variables a number of population(P), industry(IN), the amount of production of the mining and manufacturing industries(MMI), the rate of the effectiveness of freight capacity(LE) and the distance of an empty carriage operation(VC). This study describes well the simultaneous process of freight supply-demand system in that the increase of VC from the decrease of VC raises the cargo capacity and cargo capacity also augments VC. By the way. it is analyzed that the increment of VC due to the increase of the cargo capacity is larger than the reduction of VC owing to the increase of the quantify of goods. Therefore an alternative policy is needed in a short and long run point of view. That is to say, to promote the effectiveness of the freight transportation system, a short term supply control and a long run logistic infrastructure are urgent based on the restoration of market economy by successive deregulation. So we are able to conclude that gradual deregulation is more desirable to build effective freight market.

  • PDF

Assessment of Equivalent Heights of Soil for the Lateral Earth Pressure Against Retaining Walls Due to Design Truck Load by 3D Numerical Analysis (3차원 수치해석에 의한 표준트럭하중에 의해 옹벽에 작용하는 수평토압의 등가높이 산정)

  • Seo, Seunghwan;Jin, Hyunsik;Kim, Dongwook;Chung, Moonkyung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2019
  • The lateral load from traffic depends on standard truck's axle loads and locations, loading distance from the inner wall. The method of limit state design has been adopted and used for design of roads in the Republic of Korea since 2015. The concept of equivalent height of soil accounting for traffic loading is often used for design of retaining walls to quantify the traffic loads transmitted to the inner wall faces. Due to the different characteristics of the standard design trucks between Korea and US (AASHTO), the direct use of the guidelines from AASHTO LRFD leads to incorrect estimation of traffic load effects on retaining walls. This paper presents the results of evaluation of equivalent height of soil to reflect the standard truck of the nation, based on the findings from analytical solutions using 3D finite element method. Compare to US, the standard truck loading has a structure where the axle load is concentrated so that the equivalent load height is estimated to be slightly larger than AASHTO for lower retaining wall height. It would be reasonable to present the equivalent load height in Korea more conservatively than AASHTO in terms of securing long term stability of the retaining wall structure.

Suggestion of the Settlement Estimation Method for Granular Compaction files Considering Lateral Deformations (횡방향 변형을 고려한 조립토 다짐말뚝의 침하량 평가기법 제안)

  • Hwang Jung-Soon;Kim Hong-Taek;Kim Seung-Wook;Koh Yong-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.149-157
    • /
    • 2005
  • In cases of the loosely accumulated ground and soft clayey soils, the settlement criterion usually governs in evaluating the stability of structures. The settlement is also a dominant factor to control the design of granular compaction piles mainly applied to the reinforcement of foundation structures in soft ground. In the previous studies, settlement behaviors of granular compaction piles have generally been analyzed with an evaluation of the settlement reduction factor based on the load-sharing ratio and the replacement ratio. In this approach, however, since the reinforced ground with granular compaction piles is simplified as the composite ground, only the difference of a relative vertical strength between piles and soils is taken into account without reflecting lateral behaviors of granular compaction piles. In the present study, the method of estimating the settlement of granular compaction piles is proposed by synthetically considering a vertical strength of the ground, lateral behaviors of granular compaction piles, the strength of pile materials, a pile diameter, and an installation distance of the pile. Further, far the verification of a validity of the proposed method, predicted settlements are compared with results from previous studies. In addition, parametric studies are performed together with detailed analyses of relevant design parameters.

Comparison of cone beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars (하악 제3대구치와 하악관과의 위치관계에 대한 파노라마 방사선사진과 cone beam형 전산화단층촬영상의 비교)

  • Choi, Hyung-Soo;Kim, Gyu-Tae;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.38 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • Purpose : To assess the diagnostic accuracy and value in an imaging technique field through the comparison of cone beam computed tomography and conventional panoramic radiography in assessing the topographic relationship between the mandibular canal and impacted third molars. Materials and Methods : Participants consisted of 100 patients offered the images through cone beam computed tomography and panoramic radiography. PSR-$9000^{TM}$ Dental CT system (Asahi Roentgen Ind. Co., Ltd, Japan) was used as the unit of cone beam computed tomography. CE-II (Asahi Roentgen Ind. Co., Ltd, Japan) and Pro Max (Planmeca Oy, Finland) were used as the unit of panoramic radiography. The images obtained through panoramic radiography were classified into 3 types according to the distance between mandibular canal and root of mandibular third molar. And they were classified into 4 types according to the proximity of radiographic feature. The images obtained through cone beam computed tomography based on the classification above were classified into 4 types according to the location between the mandibular canal and the root and were analyzed. And they were classified into buccal, inferior, lingual, and between roots, according to the location between mandibular canal and root. The data were statistically analyzed and estimated by $X^2$-test. Results : 1. There was no statistical significance according to 3 types (type I, type II, type III) through CBCT. 2. The results of 4 types (type A, type B, type C, type D) through CBCT were as high prevalence of CBCT 1 in type A, CBCT 2 in type B, CBCT 3 in type C, and CBCT1 in type D and those of which showed statistical significance (P value=0.03). 3. The results according to location between mandibular canal and root through CBCT recorded each 49, 25, 17, 9 as buccal, inferior, lingual, between roots. Conclusion : When estimating the mandibular canal and the roots through the panoramic radiography, it could be difficult to drive the views of which this estimation was considerable. Thus it is required to have an accurate diagnostic approaching through CBCT that could estimate the location between mandibular canal and roots.

  • PDF