• Title/Summary/Keyword: Estimated miss detection probability

Search Result 2, Processing Time 0.016 seconds

Optimal Spectrum Sensing Framework based on Estimated Miss Detection Probability for Aggregated Data Slots in Cognitive Radio Networks (무선 인지 네트워크에서 군집형 데이터 슬롯의 미검출 확률 추정에 기반한 최적 스펙트럼 센싱 구조)

  • Wu, Hyuk;Lee, Dong-Jun
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.5
    • /
    • pp.506-515
    • /
    • 2013
  • In cognitive radio networks, several research works typically address the framework which consists of a spectrum sensing period and a data transmission period. When the frame period is short, there is the problem that the throughput of secondary users decrease. In this paper, aggregated data slot structure is considered to increase the throughput of secondary users. Chapman-Kolmogorov equation is used for the modeling of the transmission probability of primary users and formulation of an optimization problem to maximize the throughput of secondary users. Solution of the optimization problem results in the optimal spectrum sensing time, the length of data slot and the number of data slots governed by a spectrum sensing.

Performance of Spiked Population Models for Spectrum Sensing

  • Le, Tan-Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In order to improve sensing performance when the noise variance is not known, this paper considers a so-called blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the effects of the number of SUs and the number of samples on the spectrum sensing performance.