• Title/Summary/Keyword: Error Pattern Modeling

Search Result 54, Processing Time 0.029 seconds

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

A Hybrid Data Mining Technique Using Error Pattern Modeling (오차 패턴 모델링을 이용한 Hybrid 데이터 마이닝 기법)

  • Hur, Joon;Kim, Jong-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.4
    • /
    • pp.27-43
    • /
    • 2005
  • This paper presents a new hybrid data mining technique using error pattern modeling to improve classification accuracy when the data type of a target variable is binary. The proposed method increases prediction accuracy by combining two different supervised learning methods. That is, the algorithm extracts a subset of training cases that are predicted inconsistently by both methods, and models error patterns from the cases. Based on the error pattern model, the Predictions of two different methods are merged to generate final prediction. The proposed method has been tested using practical 10 data sets. The analysis results show that the performance of proposed method is superior to the existing methods such as artificial neural networks and decision tree induction.

The Study on Pattern Dependent Modeling of ILD CMP (패턴에 따른 층간절연막 CMP의 모델리에 관한 연구)

  • 홍기식;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1121-1124
    • /
    • 2001
  • In this study, we verify th effects of pattern density on interlayer dielectric chemical mechanical polishing process based on the analysis of Preston's equation and confirm this analysis by several experiments. Appropriate modeling equation, transformed form Preston's equations used in glass polishing, will be suggested and described the effects of this modeling during pattern wafer ILD CMP. Results indicate that the modeling is well agreed to middle density structure of the die in pattern wafer, but has some error in low and high density structure of the die. Actually, the die used in Fab, was designed to have a appropriate density, therefore this modeling will be suitable for estimating the results of ILD CMP.

  • PDF

The NURBS Human Body Modeling Using Local Knot Removal

  • Jo, Joon-Woo;Han, Sung-Soo
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.348-354
    • /
    • 2005
  • These days consumers' various demands are accelerating research on apparel manufacturing system including automatic measurement, pattern generation, and clothing simulation. Accordingly, methods of reconstructing human body from point-clouds measured using a three dimensional scanning device are required for apparel CAD system to support these functions. In particular, we present in this study a human body reconstruction method focused on two issues, which are the decision of the number of control point for each sectional curve with error bound and the local knot removal for reducing the unusual concentration of control points. The approximation of sectional curves with error bounds as an approximation criterion leads all sectional curves to their own particular shapes apart from the number of control points. In addition, the application of the local knot removal to construction of human body sectional curves reduces the unusual concentration of control points effectively. The results may be used to produce an apparel CAD system as an automatic pattern generation system and a clothing simulation system through the low level control of NUBS or NURBS.

Simulation Input Modeling : Sample Size Determination for Parameter Estimation of Probability Distributions (시뮬레이션 입력 모형화 : 확률분포 모수 추정을 위한 표본크기 결정)

  • Park Sung-Min
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.1
    • /
    • pp.15-24
    • /
    • 2006
  • In simulation input modeling, it is important to identify a probability distribution to represent the input process of interest. In this paper, an appropriate sample size is determined for parameter estimation associated with some typical probability distributions frequently encountered in simulation input modeling. For this purpose, a statistical measure is proposed to evaluate the effect of sample size on the precision as well as the accuracy related to the parameter estimation, square rooted mean square error to parameter ratio. Based on this evaluation measure, this sample size effect can be not only analyzed dimensionlessly against parameter's unit but also scaled regardless of parameter's magnitude. In the Monte Carlo simulation experiments, three continuous and one discrete probability distributions are investigated such as ; 1) exponential ; 2) gamma ; 3) normal ; and 4) poisson. The parameter's magnitudes tested are designed in order to represent distinct skewness respectively. Results show that ; 1) the evaluation measure drastically improves until the sample size approaches around 200 ; 2) up to the sample size about 400, the improvement continues but becomes ineffective ; and 3) plots of the evaluation measure have a similar plateau pattern beyond the sample size of 400. A case study with real datasets presents for verifying the experimental results.

Facial Feature Extraction with Its Applications

  • Lee, Minkyu;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • v.2 no.1
    • /
    • pp.7-9
    • /
    • 2015
  • Purpose In the many face-related application such as head pose estimation, 3D face modeling, facial appearance manipulation, the robust and fast facial feature extraction is necessary. We present the facial feature extraction method based on shape regression and feature selection for real-time facial feature extraction. Materials and Methods The facial features are initialized by statistical shape model and then the shape of facial features are deformed iteratively according to the texture pattern which is selected on the feature pool. Results We obtain fast and robust facial feature extraction result with error less than 4% and processing time less than 12 ms. The alignment error is measured by average of ratio of pixel difference to inter-ocular distance. Conclusion The accuracy and processing time of the method is enough to apply facial feature based application and can be used on the face beautification or 3D face modeling.

A Study on the Pattern Recognition of Hole Defect using Neural Networks (신경회로망을 이용한 원공 결함 패턴 인식에 관한 연구)

  • 이동우;홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2003
  • Ultrasonic inspection of defects has been focused on the existence of defect in structural material and need has much time and expenses in inspecting all the coordinates (x, y) on material surface. Neural networks can have an application to coordinates (x, y) of defects by multi-point inspection method. Ultrasonic inspection modeling is optimized by neural networks Neural networks has trained training example of absolute and relative coordinate of defects, and defect pattern. This method can predict coordinates (x, y) of defects within engineering estimated mean error $\psi$.

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Development of Global Function Approximations of Desgin optimization Using Evolutionary Fuzzy Modeling

  • Kim, Seungjin;Lee, Jongsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1206-1215
    • /
    • 2000
  • This paper introduces the application of evolutionary fuzzy modeling (EFM) in constructing global function approximations to subsequent use in non-gradient based optimizations strategies. The fuzzy logic is employed for express the relationship between input training pattern in form of linguistic fuzzy rules. EFM is used to determine the optimal values of membership function parameters by adapting fuzzy rules available. In the study, genetic algorithms (GA's) treat a set of membership function parameters as design variables and evolve them until the mean square error between defuzzified outputs and actual target values are minimized. We also discuss the enhanced accuracy of function approximations, comparing with traditional response surface methods by using polynomial interpolation and back propagation neural networks in its ability to handle the typical benchmark problems.

  • PDF

Computer Vision Based Measurement, Error Analysis and Calibration (컴퓨터 시각(視覺)에 의거한 측정기술(測定技術) 및 측정오차(測定誤差)의 분석(分析)과 보정(補正))

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.17 no.1
    • /
    • pp.65-78
    • /
    • 1992
  • When using a computer vision system for a measurement, the geometrically distorted input image usually restricts the site and size of the measuring window. A geometrically distorted image caused by the image sensing and processing hardware degrades the accuracy of the visual measurement and prohibits the arbitrary selection of the measuring scope. Therefore, an image calibration is inevitable to improve the measuring accuracy. A calibration process is usually done via four steps such as measurement, modeling, parameter estimation, and compensation. In this paper, the efficient error calibration technique of a geometrically distorted input image was developed using a neural network. After calibrating a unit pixel, the distorted image was compensated by training CMLAN(Cerebellar Model Linear Associator Network) without modeling the behavior of any system element. The input/output training pairs for the network was obtained by processing the image of the devised sampled pattern. The generalization property of the network successfully compensates the distortion errors of the untrained arbitrary pixel points on the image space. The error convergence of the trained network with respect to the network control parameters were also presented. The compensated image through the network was then post processed using a simple DDA(Digital Differential Analyzer) to avoid the pixel disconnectivity. The compensation effect was verified using known sized geometric primitives. A way to extract directly a real scaled geometric quantity of the object from the 8-directional chain coding was also devised and coded. Since the developed calibration algorithm does not require any knowledge of modeling system elements and estimating parameters, it can be applied simply to any image processing system. Furthermore, it efficiently enhances the measurement accuracy and allows the arbitrary sizing and locating of the measuring window. The applied and developed algorithms were coded as a menu driven way using MS-C language Ver. 6.0, PC VISION PLUS library functions, and VGA graphic functions.

  • PDF