• Title/Summary/Keyword: Error Handling

Search Result 222, Processing Time 0.027 seconds

PTP Management Node-based Time Synchronization Error Detection and Recovery System (PTP Management Node 기반 시각동기 오류 검출 및 대응 시스템)

  • Kim, Yoon Hyun;Son, Kyou Jung;Seo, Young Duk;Chang, Tae Gyu
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.248-253
    • /
    • 2020
  • This paper proposed PTP(Precision Time Protocol) management node-based time synchronization error detection and recovery system. The proposed system is to maintain the preciseness of time synchronization under time synchronization error situations on IEEE 1588-based network environment. To demonstrate the proposed time synchronization error detection and recovery system, PTP implemented EVM(Evaluation Module)-based experiments were performed. As a results of the experiments, it is shown that the proposed system effectively maintains the preciseness of time synchronization under time synchronization error situations.

A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude (공기정보 오차에 의한 저고도 초음속 영역에서의 민감도 해석에 관한 연구)

  • Kim, Chong-Sup;Hwang, Byung-Moon;Kim, Seong-Youl;Kim, Seong-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.80-87
    • /
    • 2005
  • T-50 supersonic jet trainer aircraft using digital flight-by-wire flight control system receives aircraft flight conditions such as altitude, VCAS(Calibrated Airspeed) and Angle of Attack from IMFP(Integrated Multi-Function Probe). IMFP sensors information have triplex structure using three IMFP sensors. Air-data selection logic is mid-value selection in three information from three IMFP sensors in order to have more reliability. From supersonic flight test at high altitude, air-data information is dropped simultaneously because of supersonic shock wave effect. This error information may affect to aircraft stability and safety in supersonic area at low altitude. This paper propose that sensitivity analysis and HQS(Handling Quality Simulator) pilot simulation in order to analyze flight stability and controllability in supersonic area at low altitude when these information is applied to flight control law.

Characteristics of Needle Insertion Performance of Automated Biopsy Device for Robotic Needle Insertion Type Intervention: Insertion Depth and Accuracy (로봇 자동화 바늘삽입형 중재시술을 위한 자동화 생검장치의 바늘삽입 특성: 바늘삽입 깊이 및 삽입정확도)

  • Moon, Youngjin;Choi, Jaesoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.565-570
    • /
    • 2016
  • This paper presents the characteristics related to needle insertion of a robotic device for the automated biopsy procedure. The automated biopsy device, a main component of the robotic needle insertion type intervention system, allows performance of the full biopsy procedure, except for anesthesia, without direct handling of a radiologist or a tele-operated control. In this study, the needle length parameters corresponding to various insertion depths and precision for needle insertion of the automated biopsy device, are discussed. There were two combinations of needle length parameters for appropriate needle insertion and motion capture-based measurement was performed; 0.156 mm error for the 90 mm length commanded insertion displacement was measured. The pre-defined goal is a maximum 1 mm error and thus our measured error is within the acceptable range. In the repeatability check, it was also shown that the device can implement a highly accurate insertion.

GMDH Algorithm with Data Weighting Performance and Its Application to Power Demand Forecasting (데이터 가중 성능을 갖는 GMDH 알고리즘 및 전력 수요 예측에의 응용)

  • Shin Jae-Ho;Hong Yeon-Chan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.631-636
    • /
    • 2006
  • In this paper, an algorithm of time series function forecasting using GMDH(group method of data handling) algorithm that gives more weight to the recent data is proposed. Traditional methods of GMDH forecasting gives same weights to the old and recent data, but by the point of view that the recent data is more important than the old data to forecast the future, an algorithm that makes the recent data contribute more to training is proposed for more accurate forecasting. The average error rate of electric power demand forecasting by the traditional GMDH algorithm which does not use data weighting algorithm is 0.9862 %, but as the result of applying the data weighting GMDH algorithm proposed in this paper to electric power forecasting demand the average error rate by the algorithm which uses data weighting algorithm and chooses the best data weighting rate is 0.688 %. Accordingly in forecasting the electric power demand by GMDH the proposed method can acquire the reduced error rate of 30.2 % compared to the traditional method.

The Propose of Optimal Flow Data Acquisition by Error Rate Analysis of Flow Data (유량 데이터 오차율 분석을 통한 최적의 유량데이터 취득방안 제안)

  • Kim, Yunha;Choi, Hyunju
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.3
    • /
    • pp.249-256
    • /
    • 2017
  • Recently, application areas based on M2M (Machine-to-Machine communications) and IoT (Internet of Things) technologies are expanding rapidly. Accordingly, water flow and water quality management improvements are being pursued by applying this technology to water and sewage facilities. Especially, water management will collect and store accurate data based on various ICT technologies, and then will expand its service range to remote meter-reading service using smart metering system. For this, the error in flow rate data transmitting should be minimized to obtain credibility on related additional service system such as real time water flow rate analysis and billing. In this study, we have identified the structural problems in transmitting process and protocol to minimize errors in flow rate data transmission and its handling process which is essential to water supply pipeline management. The result confirmed that data acquisition via communication system is better than via analogue current values and pulse, and for communication method case, applying the industrial standard protocol is better for minimizing errors during data acquisition versus applying user assigned method.

NJ+: An Efficient Congestion Control Mechanism for Wireless Networks

  • Lee, Jae-Hyung;Kim, Jung-Rae;Park, Min-U;Koo, Ja-Hwan;Choo, Hyun-Seung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.6
    • /
    • pp.333-351
    • /
    • 2008
  • Transmission control protocols have to overcome common problems in wireless networks. TCP employing both packet loss discrimination mechanism and available bandwidth estimation algorithm, known as the good existing solution, shows significant performance enhancement in wireless networks. For instance, TCP New Jersey which exhibits high throughput in wireless networks intends to improve TCP performance by using available bandwidth estimation and congestion warning. Even though it achieves 17% and 85% improvements in terms of goodput over TCP Westwood and TCP Reno, respectively, we further improve it by exploring maximized available bandwidth estimation, handling bit-error-rate error recovery, and effective adjustment of sending rate for retransmission timeout. Hence, we propose TCP NJ+, showing that for up to 5% packet loss rate, it outperforms other TCP variants by 19% to 104% in terms of goodput when the network is in bi-directional background traffic.

A Study on the Prevention Measures of Human Error with Railway Drivers (열차 운전 종사자를 대상으로 한 인적오류의 개선 방안 연구)

  • Kim, Dong Won;Song, Bo Young;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.76-81
    • /
    • 2019
  • In this study, the causes of human error were identified through the survey of the drivers of the three organizations: Seoul Metro, Seoul Metropolitan Rapid Transit Corporation, and Korail. It was started with the aim of finding and eliciting causes in various directions including human factors, job factors, and environmental factors. The Cronbach alpha value was 0.95 for the reliability significance of the stress-induced factors in the operational area. The significance probability for organisational factors was shown to be 0.82, and the significance of the sub-accident experience and the driving skill factors in operation was 0.81 In addition, the analysis results showed that stress-induced in the field of driving is higher than the human factors in the reliability analysis. The results of the analysis confirmed that the reliability of the organizational and operational stress-induced factors was higher than other causes. In order to reduce urban railroad accidents, this paper suggests a method for operating safe urban railroad through the minimization human errors.

A Study on the Performance Improvement of GMDH Algorithm by Feedback (피드백에 의한 GMDH 알고리듬 성능 향상에 관한 연구)

  • Hong, Yeon-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.559-564
    • /
    • 2010
  • The GMDH(Group Method of Data Handling) algorithm can be used to predict the complex nonlinear systems. The traditional GMDH algorithm produces the prdicted output of the system model in the output layer through the input layer and the intermediate layers as the prescribed process. The outputs of each layer are produced only by the outputs of the former layer. However, in the traditional GMDH algorithm, though the optimal structure of each layer is derived, the overall structure may not be derived optimally. To overcome this problem, GMDH prediction model which has the overall optimal structure is constructed by feeding back the error between the predicted output and the real output. This can make the prediction more precise. The capability improvement of the proposed algorithm compared to the traditional algorithm is verified through computer simulation.

A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane (천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구)

  • Jeong, kyung-Chae;Hong, Jin-Cheol;Bae, Jin-Ho;Lee, Dal-Hae;Lee, Suck-Gyu;Lee, Hai-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF

A Study on Optimal Polynomial Neural Network for Nonlinear Process (비선형 공정을 위한 최적 다항식 뉴럴네트워크에 관한 연구)

  • Kim, Wan-Su;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.149-151
    • /
    • 2005
  • In this paper, we propose the Optimal Polynomial Neural Networks(PNN) for nonlinear process. The PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to feedforward Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and can be generated. The each node of PNN structure uses several types of high-order polynomial such as linear, quadratic and modified quadratic, and is connected as various kinds of multi-variable inputs. The conventional PNN depends on experience of a designer that select No. of input variable, input variable and polynomial type. Therefore it is very difficult a organizing of optimized network. The proposed algorithm identified and selected No. of input variable, input variable and polynomial type by using Genetic Algorithms(GAs). In the sequel the proposed model shows not only superior results to the existing models, but also pliability in organizing of optimal network. Medical Imaging System(MIS) data is simulated in order to confirm the efficiency and feasibility of the proposed approach in this paper.

  • PDF