• 제목/요약/키워드: Equivalent linear analysis

검색결과 526건 처리시간 0.031초

수정된 등가선형 해석 기법의 사례를 통한 검증 (Verification of Modified Equivalent Linear Analysis Through Case Study)

  • 정창균;곽동엽;박두희
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.273-276
    • /
    • 2008
  • Equivalent linear method indirectly reflects a variation of shear modulus(G/Gmax) and damping ratio $(\xi)$ by selects mean value of every response analysis. Existing equivalent linear method does not properly consider variation of shear strain along frequencies and uses mean value. Real dynamic soil behavior is affected by shear stiffness and damping ratio. Modified equivalent linear method is developed to consider variation. Modified equivalent linear method can reflects high strain at low frequency and low strain at high frequency by using an easement curve. This study presents propriety of method by case study.

  • PDF

주파수-변형률 곡선의 개발 및 검증 (Development & Verification of Frequency-Strain Dependence Curve)

  • 정창균;곽동엽;박두희
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

Seismic responses of base-isolated buildings: efficacy of equivalent linear modeling under near-fault earthquakes

  • Alhan, Cenk;Ozgur, Murat
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1439-1461
    • /
    • 2015
  • Design criteria, modeling rules, and analysis principles of seismic isolation systems have already found place in important building codes and standards such as the Uniform Building Code and ASCE/SEI 7-05. Although real behaviors of isolation systems composed of high damping or lead rubber bearings are nonlinear, equivalent linear models can be obtained using effective stiffness and damping which makes use of linear seismic analysis methods for seismic-isolated buildings possible. However, equivalent linear modeling and analysis may lead to errors in seismic response terms of multi-story buildings and thus need to be assessed comprehensively. This study investigates the accuracy of equivalent linear modeling via numerical experiments conducted on generic five-story three dimensional seismic-isolated buildings. A wide range of nonlinear isolation systems with different characteristics and their equivalent linear counterparts are subjected to historical earthquakes and isolation system displacements, top floor accelerations, story drifts, base shears, and torsional base moments are compared. Relations between the accuracy of the estimates of peak structural responses from equivalent linear models and typical characteristics of nonlinear isolation systems including effective period, rigid-body mode period, effective viscous damping ratio, and post-yield to pre-yield stiffness ratio are established. Influence of biaxial interaction and plan eccentricity are also examined.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I))

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동 (Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method)

  • 오병환;전세진
    • 콘크리트학회논문집
    • /
    • 제14권6호
    • /
    • pp.843-850
    • /
    • 2002
  • 프리스트레스트 콘크리트 부재의 해석이론에서 텐던의 직선이동(linear transformation)은 텐던 배치에 대한 해석을 간략화시켜주는 장점이 있어 빈번히 다루어지고 있다. 본 논문은 그동안 간과되기 쉬웠던 직선이동에 내재된 근사화 및 그 영향을 밝히는데 중점을 두고 있으며, 주로 등가하중법(equivalent load method)을 통하여 직선이동의 이론을 분석하였다. 텐던이 이동하더라도 똑같은 등가하중 시스템이 산출되는 것을 직선이동으로 볼 경우, 기존의 등가하중법 고유의 내재된 가정은 그러한 직선이동의 원리가 성립하도록 하고 있으며, 반면 근사화가 포함되지 않은 엄밀한 의미의 등가하중 시스템에서는 그러한 원리가 성립하고 있지 않다 또한, 자체평형의 성질로부터 유도된 등가하중법을 직선이동에 적용하는 방안을 모색하였으며, 기존의 결과와 약간 다른 등가하중 시스템을 산출하였다. 논의를 확장하여 격납구조물 벽체 원환텐던(circumferential tendon)의 편심배치 문제를 직선이동의 관점에서 분석하였다.

등가선형 및 비선형 납-고무받침 모델을 이용한 면진된 원전구조물의 지진응답의 비교 (Comparison of Seismic Responses of Seismically Isolated NPP Containment Structures using Equivalent Linear- and Nonlinear-Lead-Rubber Bearing Modeling)

  • 이진희;송종걸
    • 한국지진공학회논문집
    • /
    • 제19권1호
    • /
    • pp.1-11
    • /
    • 2015
  • In order to perform a soil-isolation-structure interaction analysis of seismically isolated nuclear power plant (NPP) structures, the nonlinear behavior of a seismic isolation system may be converted to an equivalent linear model used in frequency domain analysis. Seismic responses for seismically isolated NPP containment structures subjected to a simple artificial acceleration history and different site class earthquakes are evaluated for the equivalent-linear and nonlinear models that have been applied to lead-rubber bearing (LRB) modeling. It can be observed that the maximum displacements of the equivalent linear model are larger than that of the nonlinear model. From the floor response spectrum analysis for the top of NPP containment structures, it can be observed that the spectral acceleration of an equivalent linear model at about 0.5 Hz frequency is about 2~3 times larger than that of a nonlinear model.

Estimation of Plastic Energy Dissipation Amount of Multi-bent Spatial structure by Equivalent Linear Analysis

  • 이승재
    • 한국공간구조학회논문집
    • /
    • 제6권2호
    • /
    • pp.131-136
    • /
    • 2006
  • It is important to evaluate energy absorption capacity of frames required during a design earthquake. An inelastic computer analysis based on mathematical modelling of energy absorbing frames and elements makes it possible to evaluate required energy absorption capacity. But such an analysis sometimes consumes much computation time particularly in case of complicated structural system. This paper presents a proposal to predict energy absorption of multi-bent steel frames by simple equivalent linear method.

  • PDF

등가선형 및 이선형 납-고무받침 모델을 적용한 면진된 원전구조물의 지진 취약도 해석 (Seismic Fragility Analysis of Seismically Isolated Nuclear Power Plant Structures using Equivalent Linear- and Bilinear-Lead Rubber Bearing Model)

  • 이진희;송종걸
    • 한국지진공학회논문집
    • /
    • 제19권5호
    • /
    • pp.207-217
    • /
    • 2015
  • In order to increase seismic performance of nuclear power plant (NPP) in strong seismic zone, lead-rubber bearing (LRB) can be applied to seismic isolation system of NPP structures. Simple equivalent linear model as structural analysis model of LRB is more widely used in initial design process of LRB than a bilinear model. Seismic responses for seismically isolated NPP containment structures subjected to earthquakes categorized into 5 different soil-site classes are calculated by both of the equivalent linear- and bilinear- LRB models and compared each others. It can be observed that the maximum displacements of LRB and shear forces of containment in the case of the equivalent linear LRB model are larger than those in the case of bilinear LRB model. From the seismic fragility curves of NPP containment structures isolated by LRB, it can be observed that seismic fragility in the case of equivalent linear LRB model are about 5~30 % larger than those in the case of bilinear LRB model.

마찰감쇠기-가새 시스템의 확률분포 기반 등가선형화에 관한 실험적 연구 (Experimental Study on the Probability-based Equivalent Linearization of a Friction Damper-Brace System)

  • 강경수;박지훈
    • 한국소음진동공학회논문집
    • /
    • 제16권4호
    • /
    • pp.394-403
    • /
    • 2006
  • A new equivalent linearization technique is proposed for a friction damper-brace system (FDBS) idealized as a elastoplastic system. The equivalent linearization technique utilizes secant stiffness and dissipated energy defined by the probability distribution of the extremal displacement of the FDBS. In addition, a conversion scheme is proposed so that an equivalent linear system is designed first and converted to the FDBS. For comparative study, an existing model update technique based on system identification is modified in a form appropriate to update single element. For the purpose of verification, shaking table tests of a small scale three-story shear building model, in which a rotational FDBS is installed, are conducted and equivalent linear systems are obtained using the proposed technique and the model update technique. Complex eigenvalue analysis is conducted for those equivalent linear systems, and the natural frequencies and modal damping ratios are compared with those obtained from system identification. Additionally, RMS and peak responses obtained from time history analysis of the equivalent linear systems are compared with measured ones.

등가정하중을 이용한 구조최적설계 방법을 이용한 비선형 거동구조물의 최적설계 (Non-linear Structural Optimization Using NROESL)

  • 박기종;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1256-1261
    • /
    • 2004
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. It is more expensive to carry out nonlinear response optimization than linear response optimization. The conventional method spends most of the total design time on nonlinear analysis. Thus, the NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The function satisfies the descent condition at each cycle and the NROESL algorithm converges. It is mathematically validated that the solution of the algorithm satisfies the Karush-Kuhn-Tucker necessary condition of the original nonlinear response optimization problem. The NROESL algorithm is applied to two structural problems. Conventional optimization with sensitivity analysis using the finite difference method is also applied to the same examples. The results of the optimizations are compared. The proposed method is very efficient and derives good solutions.

  • PDF