• Title/Summary/Keyword: Equivalent Material

Search Result 1,111, Processing Time 0.027 seconds

Structural Optimization of Truss with Non-Linear Response Using Equivalent Static Loads (등가정하중을 이용한 비선형 거동 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.999-1004
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.

  • PDF

The Mechanical Properties of Corrugated Cardboard using Equivalent Evaluation (등가 물성 평가를 이용한 골판지의 물성치)

  • Kwon, Kyung Young;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.157-164
    • /
    • 2014
  • The usage of corrugated cardboard for packing material is increasing in these days because it is light and easy to manufacture packing boxes. However, the structure analysis of packing boxes, made of cardboard, is not well carried. The reason can be deduced that its mechanical properties for structure analysis are not well known. The cardboards are made different shapes with various types of raw materials that are paper-based compound. In addition, the cardboards are considered to be orthotropic material. This research finds mechanical properties of triple layered cardboard which is composed of outer liner and inner liner. The moduli of elasticity and of shear for liners are found from tension test and T-Peel test. The mechanical properties of the cardboard are calculated using the super position method and equivalent evaluation method.

Design and Fabrication of Multilayer Chip Filter for Next Generation Mobile Communication Phone (차세대 이동통신 단말기에 이용되는 적층 칩 필터 설계 및 제작)

  • 이석원;윤중락
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.583-591
    • /
    • 2000
  • It this paper the multilayer chip band pass filter for next generation mobile communication phone is fabricated and designed. For the design the multilayer chip filter of non-contented equivalent circuit and contented equivalent circuit with attenuation pole is presented. Finally it is fabricated and designed using the multilayer chip filter of contented equivalent circuit with attenuation pole. The size insertion loss center frequency and band width of multilayer chip filter are 4.5$\times$3.2$\times$2.0[mm], 3.0[d.B] and 1945$\pm$25 MHz respectively. The multilayer chip filter was fabricated by screen printing with Ag electrode after tape casting. Simulation results of multilayer chip filter are compared with experimental results and found to be in excellent agreements.

  • PDF

Verification of Theoretical Model for Equivalent Drawbend (등가 드로우비드 이론 모델 검증)

  • Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.367-369
    • /
    • 2008
  • A theoretical model of equivalent drawbead for sheet metal forming analysis is experimentally verified in this paper. After the theoretical drawbead models improved a material description for the accurate calculation of drawbead forces are briefly introduced, they are verified by showing the good agreement of their drawbead forces with experimental measurements. Furthermore, the excellence of theoretical models is demonstrated by the comparison with those of commercial codes.

  • PDF

Free Vibration Analysis of Perforated Shell Submerged in Fluid (유체에 잠긴 다공 원통형 쉘의 자유진동해석)

  • Jhung Myung-Jo;Jo Jong-Chull
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.247-258
    • /
    • 2006
  • For the perforated cylindrical shell submerged in fluid, it is almost impossible to develop a finite element model due to the necessity of the fine meshing of the shell and the fluid at the same time. This necessitates the use of solid shell with equivalent material properties. Unfortunately the effective elastic constants are not found in any references even though the ASME code is suggesting those for perforated plate. Therefore in this study the equivalent material properties of perforated shell are suggested by performing several finite element analyses with respect to the ligament efficiencies.

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Electrical Conduction Mechanism and Equivalent Circuit Analysis in $Alq_3$ based Organic Light Emitting Diode ($Alq_3$에 기초한 유기 발광 소자에서 전기전도특성과 등가회로분석)

  • Chung, Dong-Hoe;Shin, Cheol-Gi;Lee, Dong-Gyu;Lee, Joon-Ung;Lee, Suk-Jae;Lee, Won-Jae;Jang, Kyung-Wook;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.103-106
    • /
    • 2004
  • We have studied a conduction mechanism and equivalent circuit analysis in $Alq_3$ based Organic Light Emitting Diode. The conduction mechanism in organic light emitting diode can be classified into three regions; ohmic region, space-charge-limited current (SCLC) region and trap-charge-limited current (TCLC) region depending on the region of applied voltage. Equivalent circuit model of organic light emitting diode can be established using a parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance $R_s$.

  • PDF

An Observation of Unified Force Expression in The Cylindrical Magnetic Material with a Vertical Current Running Through Its Center (전류가 관통하는 원통형 자성체에 미치는 전자기력식의 통일성에 대한 고찰)

  • Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.174-179
    • /
    • 2011
  • Magnetic force calculation methods such as Maxwell stress, virtual work principle, equivalent magnetic charge, and equivalent magnetizing current are widely used until now. The force density is still controversial issue even though it is common sense that all of these methods have legitimate results. The surface force densities of each method are quite different with each other in the point of numerical result and final expression. In this paper, it is shown that a unified expression of body force density is derived using virtual air-gap scheme for an analytic model in which cylindrical magnetic material with a vertical current runs through its center.

A study on the mechanically equivalent surrogate plate of U-Mo dispersion fuel using tungsten

  • Kim, Hyun-Jung;Yim, Jeong-Sik;Jeong, Yong-Jin;Lee, Kang-Hee
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.495-500
    • /
    • 2019
  • When a new fuel is developed, various mechanical properties are absolutely necessary for a safety analysis of the fuel for the licensing and prediction of its mechanical behavior during operation and accident conditions. In this paper, a mechanically equivalent surrogate plate of U-Mo dispersion fuel is presented using tungsten, substitute material of U-Mo particle. A surrogate plate, composed of tungsten/aluminum dispersion meat and aluminum alloy cladding, is manufactured with the same fabrication process with that of fuel plate except that a tungsten powder is used instead of U-Mo powder. A modal test showed that the surrogate plate and fuel plate have similar dynamic characteristics, and a tensile test demonstrated the similarity of the material property up to the yield strength range. The conducted tests proved that the surrogate tungsten plate has equivalent mechanical behaviors with that of a fuel plate, which leads to the acceptable use of a surrogate fuel assembly using tungsten/aluminum dispersion meat in various mechanical tests. The surrogate fuel assembly can be utilized for various out-of-pile characteristic tests, which are necessary for the licensing achievement of a research reactor that uses U-Mo dispersion fuel as a driver.

APPLICATION OF VISCOELASTIC DAMPING FOR PASSIVE VIBRATION CONTROL IN AUTOMOTIVE ROOF USING EQUIVALENT PROPERTIES

  • LEE K. H.;KIM C. M.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.607-613
    • /
    • 2005
  • In this study, a simplified approach to modeling the dynamic characteristics of passive constrained layer damping treatments in finite element models is presented. The basic concept is to represent multi-layered composite structures using an equivalent single layer. The equivalent properties are obtained by using the RKU (Ross, Kerwin and Ungar) equations. Comparisons are given between results obtained by the dynamic analysis of the simple models implemented in MSC/NASTRAN and by test measurements. Surface damping treatments are applied to automotive panels as well as simple structures. Using the proposed equivalent modeling technique, higher computational efficiency for the damped composite structures has been obtained.