• Title/Summary/Keyword: Equipment Performance Measurement

Search Result 337, Processing Time 0.028 seconds

Development and performance evaluation of Machine Control Kit mountable to general excavators (일반 굴삭기 장착 가능한 머신 컨트롤 키트 개발 및 성능 평가)

  • K.S. Lee;K.S. Kim;J.B. Jeong;E.S. Pak;J.I. Koh;J.J. Park;S.H. Joo
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2024
  • In this study, to prevent accidents in underground facilities during excavation, we developed a Lv.3 automated control system that can be configured as an electronic control system without changing the existing hydraulic system in a general excavator and utilized digital map information of underground facilities. We aimed to develop a strategy to prevent accidents caused by operator error. To implement this, a real-time excavator bucket end position recognition and control system was developed through angle measurement of the boom, arm, and bucket using an electronic joystick, RTK-GPS, and angle sensors. In addition, excavators are large, machine-based equipment, and it is difficult to control overshoot due to inertia with feedback control using position recognition information of the bucket tip. Therefore, feed-forward control is used to calculate the moving speed of the bucket tip in real-time to determine the target position. We developed a technology that can converge and verified the performance of the developed system through actual vehicle installation and field tests.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Characterization of a Thermal Interface Material with Heat Spreader (전자부품의 방열방향에 따른 접촉열전도 특성)

  • Kim, Jung-Kyun;Nakayama, Wataru;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.91-98
    • /
    • 2010
  • The increasing of power and processing speed and miniaturization of central processor unit (CPU) used in electronics equipment requires better performing thermal management systems. A typical thermal management package consists of thermal interfaces, heat dissipaters, and external cooling systems. There have been a number of experimental techniques and procedures for estimating thermal conductivity of thin, compressible thermal interface material (TIM). The TIM performance is affected by many factors and thus TIM should be evaluated under specified application conditions. In compact packaging of electronic equipment the chip is interfaced with a thin heat spreader. As the package is made thinner, the coupling between heat flow through TIM and that in the heat spreader becomes stronger. Thus, a TIM characterization system for considering the heat spreader effect is proposed and demonstrated in detail in this paper. The TIM test apparatus developed based on ASTM D-5470 standard for thermal interface resistance measurement of high performance TIM, including the precise measurement of changes in in-situ materials thickness. Thermal impedances are measured and compared for different directions of heat dissipation. The measurement of the TIM under the practical conditions can thus be used as the thermal criteria for the TIM selection.

Performance Evaluation of Measuring Instrument for Infra-Red Signature Suppression System Model Test (적외선 신호저감 장치 모형시험을 위한 계측기의 성능평가)

  • SeokTae Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.21-27
    • /
    • 2023
  • Modern naval ships install an Infra-Red Signature Suppression system (IRSS) in their exhaust pipe to reduce infrared signature emitted to the outside. In addition, naval ships are strategic assets with a very long life cycle, so high reliability of the performance of the equipment on board must be guaranteed. Therefore, equipment such as IRSS is evaluated for performance through model testing at the design stage. A variety of measuring instruments are used in IRSS model testing, and the reliability of these instruments must also be guaranteed. In this paper, a study was conducted to evaluate the reliability of measurement equipment used in IRSS model testing. The test equipment and instruments used were a hot gas wind tunnel, pitot tube, digital differential pressure gauge, thermocouple sensor, and digital recorder. As the fan speed of the hot gas wind tunnel increased, the measurement deviation of the flow decreased, and the temperature output of the thermocouple sensor showed differences in response time and stability depending on the method used.

Testbed development for automation of performance evaluation to cleaning robot (청소용 로봇의 성능평가 자동화를 위한 Testbed 개발)

  • Shin I.S.;Moon S.B.;Park K.H.;Nam S.H.;Jang S.P.;Ji Y.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1024-1027
    • /
    • 2005
  • This paper describes the performance index of mobile robot and development of testbed which is used to evaluate the index. The developed testbed has rectangular structure similar to a living room of home. It is semi-automation testbed system for evaluation of cleaning performance index. This system is composed with scattering and cleaning equipment of test materials, equipment rifting of objects in inner space and sides itself, vision processing system. To be consistent of performance evaluation of cleaning robot, we make use of camera in this system for the sake of measurement of robot s mobility, path and suction quantity.

  • PDF

Impact performance for high frequency hydraulic rock drill drifter with sleeve valve

  • Guo, Yong;Yang, Shu Yi;Liu, De Shun;Zhang, Long Yan;Chen, Jian Wen
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • A high frequency hydraulic rock drill drifter with sleeve valve is developed to use on arm of excavator. In order to ensure optimal working parameters of impact system for the new hydraulic rock drill drifter controlled by sleeve valve, the performance test system is built using the arm and the hydraulic source of excavator. The evaluation indexes are gained through measurement of working pressure, supply oil flow and stress wave. The relations of working parameters to impact system performance are analyzed. The result demonstrates that the maximum impact energy of the drill drifter is 98.34J with impact frequency of 71HZ. Optimal pressure of YZ45 rock drill is 12.8 MPa-13.6MPa, in which the energy efficiency reaches above 58.6%, and feature moment of energy distribution is more than 0.650.

Knee Joint Isokinetic Rehabilitation Exercise Equipment Usability Evaluation

  • Byoung-Kwon Lee;Seung-Hwa Jung;Hye-Ri Shin;Dong-Wook Han;Chang-Young Kim;Jong-Min Woo;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.414-420
    • /
    • 2022
  • Objective: In this study, the test-retest reliability and validity were presented to evaluate the usability of isokinetic rehabilitation equipment for the knee joint. Design: Cross-sectional design, reliability & validity study. Methods: Thirty healthy adults participated in the study. A CSMI dynamometer was used as a standardized measuring device to present the validity of the equipment. It was measured based on the dominant leg. The average peak torque value was selected as the measurement variable. After the measurement, a questionnaire was conducted on safety, satisfaction, and performance through the usability evaluation questionnaire. Results: The knee joint isokinetic rehabilitation equipment showed high reliability with Intraclass Correlations Coefficients (ICC) =0.883~0.956. In order to check the validity of the equipment, the 95% confidence interval of the mean difference limit was confirmed by the Bland & Altman plot. As a result, all three angular velocities showed a smaller confidence interval in the flexion than in extension. There were less than 10 plots that were not included in 2 Standard Deviation (SD) between all measurements. As a result of the usability evaluation questionnaire, the average of the safety domain(4.9±0.4), satisfaction domain(4.1±0.8), performance domain(4.3±0.8). Conclusions: If the product is improved by supplementing the items identified in the usability evaluation process, it is judged that it can be used as a useful device in various knee joint rehabilitation fields.

A Study on the Laser Measurement Experiment for Performance Advancement of Tilting Index Table (틸팅 인덱스 테이블의 성능 향상을 위한 레이저 측정 실험에 관한 연구)

  • Kim, Kwang-Sun;Lee, Tae-Ho;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.26-30
    • /
    • 2011
  • Currently, many researches are carried out about tilting index table, which is one of the main component of 5-axis machine tool. The performance of the tilting index table is associated the rotational accuracy which is very important factor for high precision machining because it have an effect on machining error. In this paper, a tilting index table is developed, and the rotational accuracy of the tilting index table using a laser measurement equipment is measured. In addition, a correction value is obtained from the measured value through compensation, and the correction value is used to improve the accuracy of the table. Comparative analysis is carried out for the accuracy of the table before and after compensation. This paper can be used by a reference for performance and reliability advancement of tilting index table.

Performance Analysis of Handover Based on LTE Systems (LTE 시스템의 handover 성능 분석)

  • Song, Jong Seob;Jung, Minah;Chae, Eun Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.182-183
    • /
    • 2021
  • To ensure the mobility of the UE(User Equipment), the handover phenomenon occurs depending on the level and quality of the radio signal. According to the set of handover event, the threshold of handover is changed. In this paper, we analyze the handover performance using LTE KPI(Key Performance Indicator) of measurement mobile traffic data in Ireland.

  • PDF