• 제목/요약/키워드: Epoxyeicosatrienoic acid

검색결과 7건 처리시간 0.02초

심혈관계 질환 치료제 후보물질 발굴을 위한 Soluble Epoxide Hydrolase 억제평가 방법 개발 (Development of Soluble Epoxide Hydrolase Inhibitor Screening Methods for Discovery of Drug Candidate in Cardiovascular Diseases)

  • 이관호;김봉희;김상겸
    • 약학회지
    • /
    • 제56권1호
    • /
    • pp.42-47
    • /
    • 2012
  • Soluble epoxide hydrolase (sEH) is a metabolic regulator of epoxyeicosatrienoic acids (EETs). EETs have many beneficial effects, vasodilation, anti-diabetes, anti-inflammation, cardiovascular protection, renal protection. Therefore, selective sEH inhibitors have a potential for treating these diseases. In the present study, screening methods for sEH inhibitors using PHOME ((3-phenyl-oxiranyl)-acetic acid cyano-(6-methoxynaphthalen-2-yl)-methyl ester) and 14-15-EET as substrates were established. To determine selectivity, microsomal epoxide hydrolase (mEH) inhibition assay was also developed using styrene oxide as a substrate of microsomal epoxide hydrolase. Our results obtained from 12-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]-dodecanoic acid (AUDA) used as a positive sEH inhibitor and valpromide used as a positive mEH inhibitor showed that these methods are useful for discovery of drug candidates.

Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways

  • Qu, Youyang;Liu, Yu;Zhu, Yanmei;Chen, Li;Sun, Wei;Zhu, Yulan
    • Molecules and Cells
    • /
    • 제40권11호
    • /
    • pp.837-846
    • /
    • 2017
  • As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.

곤충 면역반응을 중개하는 프로스타글란딘의 분자적 기작과 해충방제 응용 (Molecular Action of Prostaglandin to Mediate Insect Immunity and Its Application to Develop Novel Insect Control Techniques)

  • 김용균
    • 한국응용곤충학회지
    • /
    • 제61권1호
    • /
    • pp.173-195
    • /
    • 2022
  • 척추동물과 유사하게 곤충도 인지질분해효소(phospholipase A2)의 촉매 작용으로 다양한 아이코사노이드를 합성한다. 그러나 일련의 아이코사노이드 생합성과정은 척추동물과 차이를 보이는데, 이는 곤충의 인지질에는 전구물질인 아라키도닉산의 함량이 낮기 때문이다. 대신에 비교적 풍부하게 존재하는 다가불포화지방산인 리놀레익산을 기반으로 사슬 연장 및 불포화반응으로 아라키도닉산을 합성하여 척추동물과 같이 아이코사노이드 전구물질로 이용하는 것 같다. 이렇게 해서 형성된 아라키도닉산은 다시 척추동물의 cyclooxygenase와 유사한 peroxynectin이 PGH2 형태의 프로스타글란딘(prostaglandin: PG) 전구물질을 형성하게 된다. 이후 여러 이성체 효소들의 특이적 반응에 의해 PGA2, PGD2, PGE2, PGI2, TXB2의 다양한 PG가 생성된다. 반면에 또 다른 형태의 아이코사노이드인 에폭시아이코사트리에노익산(epoxyeicosatrienoic acid: EET)은 척추동물과 유사한 단일산화효소의 산화반응으로 아라키도닉산을 전구물질로 5,6-EET, 8,9-EET, 11,12-EET, 14,15-EET를 형성하게 된다. 그러나 세 번째 아이코사노이드 부류인 류코트리엔(leukotriene)의 경우 곤충 체내 존재는 확인되었지만 생합성 과정은 아직 밝혀지지 않았다. 이들 아이코사노이드가 곤충의 대사, 배설, 면역 및 생식에 관여하는 생리작용을 중개한다. 따라서 아이코사노이드 생합성 과정을 교란하는 물질 탐색은 새로운 살충제 개발 전략이 된다. 본 종설은 이 가운데 PG의 곤충 면역 중개 기작을 소개한다.

Stem cell-secreted 14,15-epoxyeicosatrienoic acid rescues cholesterol homeostasis and autophagic flux in Niemann-Pick-type C disease

  • Kang, Insung;Lee, Byung-Chul;Lee, Jin Young;Kim, Jae-Jun;Sung, Eun-Ah;Lee, Seung Eun;Shin, Nari;Choi, Soon Won;Seo, Yoojin;Kim, Hyung-Sik;Kang, Kyung-Sun
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.8.1-8.14
    • /
    • 2018
  • We previously demonstrated that the direct transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the dentate gyrus ameliorated the neurological symptoms of Niemann-Pick type C1 (NPC1)-mutant mice. However, the clinical presentation of NPC1-mutant mice was not fully understood with a molecular mechanism. Here, we found 14,15-epoxyeicosatrienoic acid (14,15-EET), a cytochrome P450 (CYP) metabolite, from hUCB-MSCs and the cerebella of NPC1-mutant mice and investigated the functional consequence of this metabolite. Our screening of the CYP2J family indicated a dysregulation in the CYP system in a cerebellar-specific manner. Moreover, in Purkinje cells, CYP2J6 showed an elevated expression level compared to that of astrocytes, granule cells, and microglia. In this regard, we found that one CYP metabolite, 14,15-EET, acts as a key mediator in ameliorating cholesterol accumulation. In confirming this hypothesis, 14,15-EET treatment reduced the accumulation of cholesterol in human NPC1 patient-derived fibroblasts in vitro by suppressing cholesterol synthesis and ameliorating the impaired autophagic flux. We show that the reduced activity within the CYP system in the cerebellum could cause the neurological symptoms of NPC1 patients, as 14,15-EET treatment significantly rescued cholesterol accumulation and impaired autophagy. We also provide evidence that the intranasal administration of hUCB-MSCs is a highly promising alternative to traumatic surgical transplantation for NPC1 patients.

Inhibitory Potential of Bilobetin Against CYP2J2 Activities in Human Liver Microsomes

  • Wu, Zhexue;Jang, Su-Nyeong;Park, So-Young;Phuc, Nguyen Minh;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • 제11권4호
    • /
    • pp.113-117
    • /
    • 2020
  • Cytochrome P450 2J2 (CYP2J2) is a member of the cytochrome P450 superfamily, and is known to be arachidonic acid epoxygenase that mediates the formation of four bioactive regioisomers of epoxyeicosatrienoic acids (EETs). CYP2J2 is also involved in the metabolism of drugs such as albendazole, astemizole, danazol, ebastine, and terfenadine. CYP2J2 is highly expressed in the heart and cancer tissues. In this study, the inhibitory potential of ten natural products against CYP2J2 activity was evaluated using human liver microsomes and tandem mass spectrometry. Among them, bilobetin, which is a kind of biflavonoid, exhibits a strong inhibitory effect against the CYP2J2-mediated astemizole O-demethylation (IC50 = 0.73 μM) and terfenadine hydroxylation (IC50 = 0.89 μM). This result suggests that bilobetin can be used as strong CYP2J2 inhibitor in drug metabolism study.

Mechanism of L-NAME-Resistant Endothelium-Dependent Relaxation Induced by Acetylcholine in Rabbit Renal Artery

  • Yeon, Dong-Soo;Ahn, Duck-Sun;Lee, Young-Ho;Kwon, Seong-Chun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권6호
    • /
    • pp.471-477
    • /
    • 2000
  • In the rabbit renal artery, acetylcholine $(ACh,\;1\;nM{\sim}10\;{\mu}M)$ induced endothelium-dependent relaxation of arterial rings precontracted with norepinephrine $(NE,\;1\;{\mu}M)$ in a dose-dependent manner. $N^G-nitro- L-arginine$ (L-NAME, 0.1 mM), an inhibitor of NO synthase, or ODQ $(1\;{\mu}M),$ a soluble guanylate cyclase inhibitor, partially inhibited the ACh-induced endothelium-dependent relaxation. The ACh-induced relaxation was abolished in the presence of 25 mM KCl and L-NAME. The cytochrome P450 inhibitors, 7- ethoxyresorufin $(7-ER,\;10\;{\mu}M),$ miconazole $(10\;{\mu}M),$ or 17-octadecynoic acid $(17-ODYA,\;10\;{\mu}M),$ failed to inhibit the ACh-induced relaxation in the presence of L-NAME. 11,12-epoxyeicosatrienoic acid $(11,12-EET,\;10\;{\mu}M)$ had no relaxant effect. The ACh-induced relaxation observed in the presence of L-NAME was significantly reduced by a combination of iberiotoxin $(0.3\;{\mu}M)$ and apamin $(1\;{\mu}M),$ and almost completely blocked by 4-aminopyridine (5 mM). The ACh-induced relaxation was antagonized by $P_{2Y}$ receptor antagonist, cibacron blue $(10\;and\;100\;{\mu}M),$ in a dose-dependent manner. Furthermore, 2-methylthio-ATP (2MeSATP), a potent $P_{2Y}$ agonist, induced the endothelium-dependent relaxation, and this relaxation was markedly reduced by either the combination of iberiotoxin and apamin or by cibacron blue. In conclusion, in renal arteries isolated from rabbit, ACh produced non-NO relaxation that is mediated by an EDHF. The results also suggest that ACh may activate the release of ATP from endothelial cells, which in turn activates $P_{2Y}$ receptor on the endothelial cells. Activation of endothelial $P_{2Y}$ receptors induces a release of EDHF resulting in a vasorelaxation via a mechanism that involves activation of both the voltage-gated $K^+$ channels and the $Ca^{2+}-activated\;K^+\;channels$. The results further suggest that EDHF does not appear to be a cytochrome P450 metabolite.

  • PDF

시판 약물의 시토크롬 2J2 약물대사효소 저해능 탐색 (Screening of Potential Anticancer Compounds from Marketed Drugs: Aripiprazole, Haloperidol, Miconazole, and Terfenadine Inhibit Cytochrome P450 2J2)

  • 류광현
    • 생명과학회지
    • /
    • 제21권11호
    • /
    • pp.1558-1564
    • /
    • 2011
  • CYP2J2는 치료약물 및 아라키돈산과 같은 내인성 화합물의 대사에 중요한 역할을 수행하고 있는 효소이다. 최근, CYP2J2 단백질이 인체 종양 조직이나 종양 세포주에 과발현되어 있고, CYP2J2 효소의 작용에 의해 생성된 에폭시에이코사트리에논산(EETs)이 세포사멸을 방지한다는 것이 보고되었다. 본 연구는 시판중인 약물 120종을 대상으로 시토크롬 2J2 동종효소에 저해능을 가지는 화합물을 발굴하고자 하였다. 인체 간 마이크로솜 시료에 아스테미졸과 NADPH 재생성계 및 약물(50 ${\mu}M$)을 첨가한 후 15분간 반응시켜 생성된 대사물을 LC/MS/MS를 이용하여 분석하여 시토크롬 2J2 동종효소 활성의 변화를 평가하였다. 그 결과 할로페리돌, 터페나딘, 아리피프라졸, 미코나졸의 순으로 CYP2J2 효소 활성 저해능을 보였다. 미코나졸은 CYP2J2에 의해 매개되는 에바스틴($IC_{50}$=11.2 ${\mu}M$) 및 터페나딘($IC_{50}$=2.2 ${\mu}M$) 대사를 강력하게 저해하였다. 터페나딘 또한 CYP2J2 매개 에바스틴 대사를 농도 의존적으로 저해하였다($IC_{50}$=13.6 ${\mu}M$). 향후, 이들 약물을 대상으로 한 항암 활성 평가가 필요할 것으로 판단된다.