• 제목/요약/키워드: Epoxy matrix

검색결과 414건 처리시간 0.027초

실란 결합제 처리된 에폭시 수지 복합재료의 계면 특성 (Interface Characteristics of Epoxy Composite Treated with Silane Coupling Agent)

  • 이재영;이홍기;심미자;김상욱
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1009-1013
    • /
    • 2001
  • The effects of coupling agent on the interface characteristics between epoxy resin and natural zeolite were studied by SEM, optical microscope and universal testing machine (UTM). Epoxy resin as a matrix was diglycidyl ether of bisphenol A (DGEBA)/4,4'-methylene dianiline (MDA)/malononitrile (MN) system and natural zeolite as an inorganic fillet was produced in Korea. With the increment of zeolite content, tensile strength decreased and it was due to the different elastic moduli of two materials. When external stress was loaded on the composites, the stress concentrated on the weakly bonded interface and crack grew easily. To improve the interface characteristics, the surface of the natural zeolite was treated with the silane coupling agent and it was found that the tensile strength was increased. The morphology of the interface showed that the bonding characteristics were modified by coupling agent.

  • PDF

에폭시/나노층상복합재료의 유전분산과 완화 (dispersion and relaxation of Epoxy/Layered Nanocomposite)

  • 안준호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.87-87
    • /
    • 2010
  • Epoxy/mica has been used as the material of high-voltage rotator stator winding due to its high insulation performance, mechanical strength, and thermal stability. In recent years, however, it shows frequent changes in the load of generators and frequent automatic stops due to the significant increase in peak loads from the increase in the applied load of power facilities according to the introduction of advanced and high-technology equipments. Thus, it is necessary to develop new materials that highly develop the conventional insulation materials. Nanotechnology introduced in the present time has become an alternative plan that overcomes such technical limitations. In addition, the nano-scaled intercalation composite has been known as the material that represent excellent electrical, mechanical, and thermal characteristics compared to the conventional materials. This study investigated the dielectric dispersion and relaxation characteristics of the nanocomposite, which was fabricated by mixing epoxy matrix with nano-scaled intercalation mica and clay, according to changes in frequencies and temperatures.

  • PDF

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

CYCLOALIPHATIC 애폭시 복합재료의 가속열화에 미치는 전기적 및 기계적 특성에 관한 연구 (A Study on The Electrical and Mechanical Characteristics due to accelerated degradation of Cycloaliphatic Epoxy Composites)

  • 김희곤;조한구;박용관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1323-1326
    • /
    • 1994
  • the application of epoxy composite materials for outdoor insulating systems has some significant advantages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The experimental results for the basis composition and interlace characteristics of the matrix resin/inorganic fillers($SiO_2$) which are the composite materials have been studied. The electrical characteristics(electrical breakdown, dielectric, insulating resistivity, tracking) and mechanical characteristics( tensile strength, elongation, flexible strength) in the epoxy composite materials have been studied. The life of the epoxy composite material was evaluated by accelerated Weather-Ometer test and the degradation process due to outdoor exposure condition is discussed with respect to the mechanical and electrical properties.

  • PDF

기능화된 다중벽 탄소나노튜브 복합재료의 제조 및 물성 평가에 대한 연구 (Manufacturing and Characterization of Nano-composites with Chemically Functionalized Multiwalled Carbon Nanotubes)

  • 박주혁;김태구
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.126-131
    • /
    • 2004
  • Chemically modified multiwalled carbon nanotubes with acids were incorporated into a epoxy matrix by in situ polymerization process, to improve the transfer of mechanical load through chemical bonds, which were demonstrated by infrared spectroscopy. And the mechanical properties of epoxy/carbon nanotube composites were measured to investigate the role of carbon nanotubes. The epoxy/carbon nanotube composites shows higher tensile strength and wear resistance than existing epoxy, with 1 or 2 wt. % addition of functionalized carbon nanotubes. The tensile strength with 7 wt. % carbon nanotibes is increased by a 28% and the wear resistance in exceptionally increased by an outstanding 100 times.

  • PDF

Acoustic Emission on Failure Analysis of Rubber-Modified Epoxy Resin

  • Lee Deok-Bo
    • Fibers and Polymers
    • /
    • 제5권4호
    • /
    • pp.259-263
    • /
    • 2004
  • Rubber-modified epoxy resins have been employed as adhesive and matrix materials for glass and corbon-fiber composites. The behavior of fracture around a crack tip for rubber-modified epoxy resin is investigated through the acoustic emission (AE) analysis of compact tension specimens. Damage zone and rubber particles distributed around a crack tip were observed by a polarized optical microscope and an atomic force microscope (AFM). The damage zone in front of pre-crack tip in rubber-modified specimen $(15wt\%\; rubber)$ began to form at about $13\%$ level of the fracture load and grew in size until $57\%$ load level. After that, the crack propagated in a stick-slip manner. Based on time-frequency analysis of AE signals and microscopic observation of damage zone, it was thought that AE signals with frequency bands of 0.15-0.20 MHz and 0.20­0.30 MHz were generated from cavitation in the damage zone and crack propagation, respectively.

Effect of Mixing Ratio of Spherical Silica on the Electrical Insulation Breakdown Strength in Epoxy Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.101-104
    • /
    • 2013
  • The effect of the mixing ratio of spherical silica on the electrical insulation breakdown strength in an epoxy/silica composite was studied. Spherical silicas with two average particle sizes of $5{\mu}m$ and $20{\mu}m$ were mixed in different mixing ratios, and their total filling content was fixed at 60 wt%. In order to observe the dispersion of the silicas and the interfacial morphology between silica and epoxy matrix, scanning electron microscopy (SEM) was used. The electrical insulation breakdown strength was estimated in sphere-sphere electrodes with different insulation thicknesses of 1, 2, and 3 mm. Electrical insulation breakdown strength decreased with increasing mixing ratio of $5/20{\mu}m$ and the thickness dependence of the breakdown strength was also observed.

경화온도에 따른 Castor Oil/epoxy의 강인성 (The Toughness of Castor Oil Modified Epoxy Resins by Various Cure Temperatures)

  • 김종석;홍석표
    • 공업화학
    • /
    • 제8권6호
    • /
    • pp.973-978
    • /
    • 1997
  • Diglycidyl ether of bisphenol A(DGEBA)수지에 castor oil(CO)로 혼합한 후 경화촉매인 tris(dimethylaminomethyl) phenol (DMP-30)로 반응시킨 에폭시의 강인성과 모폴로지를 관찰하였다. 개질제인 CO와 에폭시수지의 혼합물은 기존의 에폭시 개질제인 carboxyl terminated butadiene acrylonitrile(CTBN)보다 상용성이 좋았다. 경화온도와 CO의 양이 증가할수록 유리전이온도가 감소하였는데, CO/에폭시 경화물은 경화온도가 증가할수록 가교밀도가 감소하면서 연성구조를 갖게 되는 것으로 해석되었다. CO/에폭시 경화물은 경화온도 $40^{\circ}C$에서 CO의 양이 증가함에 따라 강인성이 약간 증가하였다. 경화온도가 증가와 CO의 양이 증가함에 따라 강인성이 증가하였다.

  • PDF

기지재의 가교밀도에 따른 유리섬유 복합재료의 염수노화 후 계면 및 기계적 물성 (Interfacial and Mechanical Properties of Glass Fiber Reinforced Epoxy Composites with Different Crosslinking Density after Saline Water Aging)

  • 신평수;김종현;백영민;박하승;권동준;박종만
    • Composites Research
    • /
    • 제31권5호
    • /
    • pp.186-191
    • /
    • 2018
  • 복합재료 기지재의 화학적 조성을 다르게 했을 때 염수처리 후 복합재료의 상태 및 물성을 파악하였다. 기지재는 2가지 종류의 에폭시 기지재와 3가지 종류의 경화제(아민계, 산 무수물계, 그리고 아마이드계) 이용하여 기지재의 유연성을 조절하였다. 각 복합재료에 염수 가속화 실험을 위해 염화나트륨 6 wt% 조건에 $60^{\circ}C$ 가하여 0, 15, 30일 처리하였다. 처리 후에 복합재료의 단면적을 관찰하였고, 기계 및 계면 평가를 실시하였다. 아민계를 이용한 복합재료의 가교밀도, 기계 및 계면 물성이 가장 좋은데 반해, 수분흡수율은 가장 작은 것을 확인하였다. 이는 물분자가 유리섬유와 다른 가교밀도의 에폭시 기지재간의 계면으로 침투가 어렵기 때문이다. 이는 복합재료가 염수에 잘 견딜 수 있는 요인으로 작용할 수 있다.

Acoustic Emission 의 섬유파단 Source Location을 이용한 Carbon Fiber/Epoxy Composites의 계면특성 및 비파괴적 평가 (Interfacial and Nondestructive Evaluation of Single Carbon Fiber/Epoxy Composites by Fiber Fracture Source Location using Acoustic Emission)

  • Kong, Jin-Woo;Kim, Jin-Won;Park, Joung-Man;Yoon, Dong-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.116-120
    • /
    • 2001
  • Fiber fracture is one of the dominant failure phenomena to determine total mechanical properties in composites. Fiber fracture locations were measured by optical microscopic method and acoustic emission (AE) as functions of matrix toughness and surface treatment by the electrodeposition (ED), and then two methods were compared. Two AE sensors were attached on the epoxy specimen and fiber fracture signals were detected with elapsed time. The interfacial shear stress (IFSS) was measured using tensile fragmentation test and AE system. In ED-treated case, the number of the fiber fracture measured by an optical method and AE was more than that of the untreated case. The signal number measured by AE were rather smaller than the number of fragments measured by optical method, since some fiber fracture signals were lost while AE detection. However, one-to-one correspondence between the x-position location by AE and real break positions by optical method was generally established well. The fiber break source location using AE can be a valuable method to measure IFSS for semi- or nontransparent matrix composites nondestructively (NDT).

  • PDF