Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Published : 2009.06.25

Abstract

The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.

Keywords

References

  1. P. Ehrburger and J. B. Donnet, in Surface Treatment of Carbon Fibre for Resin Matrices, Strong Fibres: Handbook of Composites, Elsevier, New York, 1985
  2. S. J. Park and Y. S. Jang, J. Colloid Interf. Sci., 237, 91 (2001) https://doi.org/10.1006/jcis.2001.7441
  3. N. Iwashita, E. Psomiadou, and Y. Sawada, Composites Part A, 29, 965 (1998) https://doi.org/10.1016/S1359-835X(97)00095-X
  4. J. Seo, W. Jang, and H. Han, Macromol. Res., 15, 10 (2007) https://doi.org/10.1007/BF03218746
  5. W. Ruland, Adv. Mater., 2, 528 (1990) https://doi.org/10.1002/adma.19900021104
  6. H. T. Ham, C. M. Koo, S. O. Kim, Y. S. Choi, and I. J. Chung, Macromol. Res., 12, 384 (2004) https://doi.org/10.1007/BF03218416
  7. J. M. Park and J. W. Kim, Macromol. Res., 10, 24 (2002) https://doi.org/10.1007/BF03218285
  8. H. S. Lee and D. W. Cho, Macromol. Res., 16, 411 (2008) https://doi.org/10.1007/BF03218538
  9. J. S. Park, J. M. Kim, S. J. Lee, S. G. Lee, Y. K. Jeong, S. E. Kim, and S. C. Lee, Macromol. Res., 15, 424 (2007) https://doi.org/10.1007/BF03218809
  10. Y. S. Park and K. H. Chung, Elastomer, 42, 75 (2007)
  11. S. J. Park and K. D. Kim, Carbon, 39, 1741 (2001) https://doi.org/10.1016/S0008-6223(00)00305-5
  12. T. Ramanathan, A. Bismarck, E. Schulz, and K. Subramanian, Compo. Sci. Technol., 61, 599 (2001) https://doi.org/10.1016/S0266-3538(00)00239-6
  13. B. J. Kim, Y. S. Lee, and S. J. Park, Current Appl. Phys., 8, 736 (2008) https://doi.org/10.1016/j.cap.2007.05.008
  14. W. S. Shin, S. J. Park, C. Park, and K. Kim, Macromol. Res., 15, 671 (2007) https://doi.org/10.1007/BF03218948
  15. S. M. Choi, E. K. Lee, and S. Y. Choi, Elastomer, 43, 147 (2008)
  16. D. Sarmeo, S. Blazewicz, M. Mermoux, and Ph. Touzain, Carbon, 39, 2049 (2001) https://doi.org/10.1016/S0008-6223(01)00023-9
  17. K. G. Saw and J. du Plessis, Mater. Lett., 58, 1344 (2004) https://doi.org/10.1016/j.matlet.2003.09.025
  18. R. A. Levy, L. Chen, J. M. Grow, and Y. Yu, Mater. Lett., 54, 102 (2002) https://doi.org/10.1016/S0167-577X(01)00545-6
  19. M. O. W. Richardson and M. J. Wisheart, Composites Part A, 27, 1123 (1996) https://doi.org/10.1016/1359-835X(96)00074-7
  20. W. L. Lee and C. F. Lin, Mater. Sci. Eng. A, 308, 124 (2001) https://doi.org/10.1016/S0921-5093(00)02024-4
  21. S. J. Park, Y. S. Jang, and K. Y. Rhee, J. Colloid Interf. Sci., 245, 383 (2002) https://doi.org/10.1006/jcis.2001.8040
  22. D. V. Bucci, M. J. Koczak, and L. S. Schadler, Carbon, 35, 235 (1997) https://doi.org/10.1016/S0008-6223(96)00155-8
  23. V. K. Srivastava, K. Maile, and A. Klenk, Mater. Sci. Eng. A, 271, 38 (1999) https://doi.org/10.1016/S0921-5093(99)00250-6